SJDAWN: St. Jude Children's Research Hospital Phase 1 Study Evaluating Molecularly-Driven Doublet...
Anaplastic AstrocytomaAnaplastic Ependymoma83 moreApproximately 90% of children with malignant brain tumors that have recurred or relapsed after receiving conventional therapy will die of disease. Despite this terrible and frustrating outcome, continued treatment of this population remains fundamental to improving cure rates. Studying this relapsed population will help unearth clues to why conventional therapy fails and how cancers continue to resist modern advances. Moreover, improvements in the treatment of this relapsed population will lead to improvements in upfront therapy and reduce the chance of relapse for all. Novel therapy and, more importantly, novel approaches are sorely needed. This trial proposes a new approach that evaluates rational combination therapies of novel agents based on tumor type and molecular characteristics of these diseases. The investigators hypothesize that the use of two predictably active drugs (a doublet) will increase the chance of clinical efficacy. The purpose of this trial is to perform a limited dose escalation study of multiple doublets to evaluate the safety and tolerability of these combinations followed by a small expansion cohort to detect preliminary efficacy. In addition, a more extensive and robust molecular analysis of all the participant samples will be performed as part of the trial such that we can refine the molecular classification and better inform on potential response to therapy. In this manner the tolerability of combinations can be evaluated on a small but relevant population and the chance of detecting antitumor activity is potentially increased. Furthermore, the goal of the complementary molecular characterization will be to eventually match the therapy with better predictive biomarkers. PRIMARY OBJECTIVES: To determine the safety and tolerability and estimate the maximum tolerated dose/recommended phase 2 dose (MTD/RP2D) of combination treatment by stratum. To characterize the pharmacokinetics of combination treatment by stratum. SECONDARY OBJECTIVE: To estimate the rate and duration of objective response and progression free survival (PFS) by stratum.
Pembrolizumab In Central Nervous System Metastases
Brain MetastasesThis research study is studying Pembrolizumab as a possible treatment for this diagnosis for metastases in the central nervous system (brain and spinal cord).
Frameless Fractionated Stereotactic Radiation in Treating Patients With Brain Metastases
Metastatic Malignant Neoplasm in the BrainThis phase II trial studies the safety and efficacy of frameless fractionated stereotactic radiation therapy for brain metastases. Frameless fractionated stereotactic radiosurgery is a specialized radiation therapy that delivers 3 to 5, high dose fractions of radiation directly to the brain lesions while sparing normal tissues.
Proton Radiotherapy for Pediatric Brain Tumors Requiring Partial Brain Irradiation
Brain TumorLow Grade Glioma3 moreSome patients with brain tumors receive standard radiation to help prevent tumor growth. Although standard radiation kills tumor cells, it can also damage normal tissue in the process and lead to more side effects. This research study is looking at a different form of radiation called proton radiotherapy which helps spare normal tissues while delivering radiation to the tumor or tumor bed. Proton techniques irradiate 2-3 times less normal tissue then standard radiation. This therapy has been used in treatment of other cancers and information from those other research studies suggests that this therapy may help better target brain tumors then standard radiation.
Selinexor in Treating Younger Patients With Recurrent or Refractory Solid Tumors or High-Grade Gliomas...
Malignant GliomaRecurrent Brain Neoplasm8 moreThis phase I trial studies the side effects and best dose of selinexor in treating younger patients with solid tumors or central nervous system (CNS) tumors that have come back (recurrent) or do not respond to treatment (refractory). Drugs used in chemotherapy, such as selinexor, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading.
Study of MEK162 for Children With Low-Grade Gliomas
Low-Grade GliomasMalignant Neoplasms2 moreThe goal of this clinical trial is to study the drug MEK162 in children with a brain tumor call low-grade glioma, as well as in children with other tumors in which a specific growth signal is abnormally turned on. The main questions it aims to answer are: What is the correct dose of MEK162 in children? What are the side effects of MEK162 in children? Is MEK162 effective in children with low-grade glioma? Participants on the study receive MEK162 by mouth twice daily for up to 2 years.
Stereotactic Radiosurgery or Whole Brain Radiation Therapy in Treating Patients With Newly Diagnosed...
Metastatic Malignant NeoplasmMetastatic Malignant Neoplasm in the BrainThis randomized phase III clinical trial compares stereotactic radiosurgery with whole brain radiation therapy to see how well they work in treating patients with non-melanoma cancer that has recently spread from the first location to the brain. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Stereotactic radiosurgery is a specialized type of radiation therapy that delivers a single, high dose of radiation directly to the tumor and may kill more tumor cells and cause less damage to normal tissue. Whole brain radiation therapy delivers a lower dose of radiation to the entire brain over several treatments. It is not yet known whether stereotactic radiosurgery works better than whole brain radiation therapy in treating patients with non-melanoma brain metastases. Stereotactic radiosurgery may also cause fewer thinking and memory problems than whole brain radiation therapy.
Lapatinib Ditosylate Before Surgery in Treating Patients With Recurrent High-Grade Glioma
Anaplastic AstrocytomaAnaplastic Ependymoma5 moreThis pilot phase I clinical trial studies how well lapatinib ditosylate before surgery works in treating patients with high-grade glioma that has come back after a period of time during which the tumor could not be detected. Lapatinib ditosylate may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
Volumetric Modulated Arc Therapy (VMAT) for Brain Metastases
Brain MetastasesRadiotherapy to the whole brain is standard treatment for cancer that has spread to the brain (brain metastases) as it treats both the metastases that can be seen on scans and the brain metastases that are too small to be seen on scans. This study will use a novel radiotherapy technique, called volumetric modulated arc therapy (VMAT), to treat patients with brain metastases. This technique allows delivery of both a standard radiation dose to the whole brain as well as a higher radiation dose to the brain metastases at the same time. The study will assess the effectiveness of using VMAT in treating brain metastases, and examine its potential side-effects.
Meclofenamate in Subjects With Recurrent or Progressive Brain Metastasis From Solid Tumor Primary...
Recurrent Brain MetastasesProgressive Brain MetastasesCancer that has spread to the brain, or brain metastasis, is difficult to treat. Meclofenamate is a drug which has been shown to reduce brain metastasis growth in the laboratory. This medicine has been used in the past to treat pain. But, in this study, it will be used to prevent new brain metastasis. This is the first time that meclofenamate will be used in patients with brain metastasis. This is a pilot study which means that the purpose of this study is to determine if a larger clinical trial of meclofenamate is possible in patients with brain metastasis. This study also aims to find out what effects, good and/or bad meclofenamate has on the patient and the cancer that has spread to the brain. The investigators also want to learn more about potential effects that this drug may have in the digestive system.