Chemotherapy Followed by Radiation Therapy in Treating Adults With Supratentorial Glioma
Brain and Central Nervous System TumorsRATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Radiation therapy uses high-energy x-rays to damage tumor cells. Combining radiation therapy with chemotherapy may kill more tumor cells. PURPOSE: Phase II trial to study the effectiveness of procarbazine, lomustine, and vincristine followed by radiation therapy in treating adults who have supratentorial glioma.
Radiation Therapy Plus Combination Chemotherapy in Treating Children With Medulloblastoma
Brain TumorsCentral Nervous System TumorsRATIONALE: Radiation therapy uses high energy x-rays to damage tumor cells. Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Combining radiation therapy with chemotherapy may kill more tumor cells. It is not yet known which chemotherapy regimen is more effective when combined with radiation therapy for treating medulloblastoma. PURPOSE: Randomized phase III trial to compare two combination chemotherapy treatments plus radiation therapy in treating children with newly diagnosed medulloblastoma.
A Study Assessing Pamiparib With Radiation and/or Temozolomide (TMZ) in Participants With Newly...
Brain and Central Nervous System TumorsThe primary objective of this study is to evaluate the safety, efficacy and clinical activity of Pamiparib in combination with radiation therapy (RT) and/or temozolomide (TMZ) in participants with newly diagnosed or recurrent/refractory glioblastoma.
Study of GDC-0084 in Pediatric Patients With Newly Diagnosed Diffuse Intrinsic Pontine Glioma or...
Brain and Central Nervous System TumorsPediatric high-grade gliomas are highly aggressive and treatment options are limited. The purpose of this first-in-pediatrics study is to examine the safety, tolerability, and pharmacokinetics of GDC-0084 and to estimate its maximum tolerated dose (MTD) when administered to pediatric patients with diffuse intrinsic pontine glioma (DIPG) or other diffuse midline H3 K27M-mutant gliomas after they have received radiation therapy (RT). GDC-0084 is a brain-penetrant inhibitor of a growth-promoting cell signaling pathway that is dysregulated in the majority of diffuse midline glioma tumor cells. This study is also designed to enable a preliminary assessment of the antitumor activity of single-agent GDC-0084, in the hope of enabling rational combination therapy with systemic therapy and/or radiation therapy (RT) in this patient population, which is in desperate need of therapeutic advances. Primary Objectives To estimate the maximum tolerated dose (MTD) and/or the recommended phase 2 dosage (RP2D) of GDC-0084 in pediatric patients with newly diagnosed diffuse midline glioma, including diffuse intrinsic pontine glioma (DIPG) To define and describe the toxicities associated with administering GDC-0084 after radiation therapy (RT) in a pediatric population To characterize the pharmacokinetics of GDC-0084 in a pediatric population Secondary Objectives To estimate the rate and duration of radiographic response in patients with newly diagnosed DIPG or other diffuse midline glioma treated with RT followed by GDC-0084 To estimate the progression-free survival (PFS) and overall survival (OS) distributions for patients with newly diagnosed DIPG or other diffuse midline glioma treated with RT followed by GDC-0084
5-Aminolevulinic Acid (5-ALA) Gliolan®: Usage Increase Proposal for Neurosurgical Procedures in...
High Grade GliomaGlioma14 moreThe goal of this observational study is to evaluate disease-free survival (DFS) in patients with malignant gliomas undergoing neurosurgical procedures using 5-aminolevulinic acid (5-ALA)-based photodynamic therapy
Prexasertib in Treating Pediatric Patients With Recurrent or Refractory Solid Tumors
Childhood Solid NeoplasmRecurrent Malignant Solid Neoplasm3 moreThis phase I trial studies the side effects and best dose of prexasertib in treating pediatric patients with solid tumors that have come back after a period of time during which the tumor could not be detected or does not respond to treatment. Checkpoint kinase 1 inhibitor LY2606368 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
Oral Pazopanib Plus Oral Topotecan Metronomic Antiangiogenic Therapy for Recurrent Glioblastoma...
GlioblastomaGlioblastoma Multiforme3 moreBackground: Glioblastoma is the most common and most aggressive type of malignant brain tumor. The drug pazopanib is used to treat people with a type of kidney cancer. Topotecan is used to treat lung cancer. Both topotecan and pazopanib have individually been used to treat patients with glioblastoma and some anti-tumor activity has been found. Researchers want to see if these two drugs together may be able to help people with glioblastoma. Objectives: To learn if pazopanib with topotecan can help control glioblastoma. Also, to study the safety of this drug combination. Eligibility: Adults at least 18 years old whose glioblastoma has returned after treatment. Design: Participants will be screened with: Medical history Physical exam Blood and urine tests Brain computed tomography (CT) or magnetic resonance imaging (MRI) For these, participants lay in a machine that takes pictures. Chest CT scan or x-ray Heart electrocardiogram (EKG) A questionnaire about quality of life Participants will be assigned to a study group. Participants will take the study drugs for 28-day cycles for up to 1 year. They will take capsules of topotecan by mouth once every day. They will take tablets of pazopanib by mouth once every day. Participants will write in a diary the times they take the study drugs. Participants will have several study visits during each cycle. These may include Blood pressure measurement Blood and urine tests EKG Physical exam and/or neurological exam Brain MRI or CT scan to check the status of the disease A symptom questionnaire At the end of treatment, participants will have a physical exam. They may have blood drawn. Participants will have follow-up calls once every 3 months to check.
Irinotecan in Treating Patients With Progressive or Recurrent Malignant Glioma
Brain and Central Nervous System TumorsRATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. PURPOSE: Phase I/II trial to study the effectiveness of irinotecan in treating patients who have progressive or recurrent malignant glioma.
Temozolomide in Treating Patients With Recurrent Oligodendroglial Tumors
Brain and Central Nervous System TumorsRATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. PURPOSE: Phase II trial to study the effectiveness of temozolomide in treating patients with recurrent oligodendroglial tumors.
Leflunomide in Treating Patients With Anaplastic Astrocytoma in First Relapse
Brain and Central Nervous System TumorsRATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. PURPOSE: Phase II trial to study the effectiveness of leflunomide in treating patients who have anaplastic astrocytoma in first relapse.