search

Active clinical trials for "Vasospasm, Intracranial"

Results 1-10 of 66

Cervical Spinal Cord Stimulation in Patients With Cerebral Vasospasm After Subarachnoid Haemorrhage:...

Cerebral VasospasmSubarachnoid Hemorrhage

Cerebral vasospasm is characterized by a vasoconstriction of cerebral arteries causing a reduction of cerebral blood flow (CBF) and leading to ischemia and infarction of the brain parenchyma. Cerebral vasospasm is a serious complication of aneurysmal subarachnoid hemorrhage (SAH) with high morbidity and overall mortality of 40-50%. Although the exact mechanisms of spinal cord stimulation (SCS) on the innervation of cerebral vessels are still unclear, several hypotheses have been formulated and studies in animals and human performed with very promising results. This is a proof of concept study to better understand the effect and mechanisms of cervical spinal cord stimulation on cerebral vasospasm after aneurysmal SAH in human.

Recruiting30 enrollment criteria

Lumbar Drain vs Extraventricular Drain to Prevent Vasospasm in Subarachnoid Hemorrhage

VasospasmIntracranial1 more

Vasospasm is a common complication after rupture of intracranial aneurysms causing devastating neurologic deficits and death. Vasospasm has been directly associated with the amount of subarachnoid blood inside the basal cisterns. Prior literature has attempted to refine treatment of ruptured intracranial aneurysms but does not have clear guidelines on the optimal method to drain subarachnoid blood. Two methods, extraventricular drain (EVD) and lumbar drain (LD) have been compared retrospectively yet remain controversial as to which method is optimal in reducing subarachnoid blood and preventing vasospasm. This study would be a prospective randomized trial in which patients would be assigned to EVD or LD and observed to see if one method of intervention is associated with preventing clinical vasospasm, decreasing subarachnoid blood, shortening overall ICU stay, and reducing the need for a permanent ventriculoperitoneal shunt. The conclusions of this study may identify an optimal treatment modality to benefit all future patients with ruptured intracranial aneurysms.

Recruiting2 enrollment criteria

"The Effect of Stellate Ganglion Block in Severe Brain Injury"

Traumatic Brain InjuryBrain Inflammation1 more

Blood flow through the brain is reduced after brain damage. Secondary brain ischemia caused by hypoxia and hypotension, further increase the susceptibility of the ischemically compromised brain to secondary impairment during this period. In order to determine whether and to what extent blockage of the stellate ganglion (BSG) affects the blood flow to the injured brain, the investigators will measure the variables of brain blood flow before and after BSG using computed tomography angiography (CTA), trans-cranial Doppler ultrasound (TCD), intracranial pressure (ICP) and perfusion computed tomography (PCT) of the brain. At the same time, the investigators would like to evaluate whether and to what extent BSG affects the aseptic inflammatory brain injury response and the biochemical indicators of brain damage in patients with moderate and severe brain injury.

Recruiting11 enrollment criteria

Chemical and Mechanical Angioplasty for Vasospasm (SAVEBRAIN)

Aneurysmal Subarachnoid HemorrhageVasospasm6 more

This is a monocentric randomized prospective trial comparing 2 different endovascular strategies of intracranial arterial angioplasty in case of refractory intracranial arterial vasospastic stenosis : chemical angioplasty chemical and mechanical angioplasty

Recruiting12 enrollment criteria

Cervical Sympathetic Block in Patients With Cerebral Vasospasm

AnesthesiaLocal3 more

The purposes of this study are twofold: 1) to assess the effect of a cervical sympathetic block on cerebral blood flow in patients suffering from cerebral vasospasm, after aneurysmal subarachnoid hemorrhage; 2) to evaluate the effect of the sympathetic block on the recovery of the neurological function.

Enrolling by invitation3 enrollment criteria

Stellate Ganglion Block and Cerebral Vasospasm

Aneurysmal Subarachnoid HemorrhageStellate Ganglion Block1 more

At present, cerebral vasospasm (cVS) is the main cause of delayed cerebral infarction (DCI), which leads to high disability and mortality rate after aneurysmal subarachnoid hemorrhage. As a consequence, the key of reducing DCI is to prevent cVS. But unfortunately, despite years of efforts, the prevention and treatment of cVS is still a major clinical dilemma and various ways of treatment are still being explored. Recent studies have shown that stellate ganglion block (SGB) can dilate cerebral vessels and alleviate the impact of existing cVS. However, there is no study to evaluate the effect of early application of SGB on the improvement and prevention of cVS after aSAH.

Recruiting14 enrollment criteria

Prevention of Vasospasm in SAH Through CSF Treatment

Subarachnoid HemorrhageSubarachnoid Hemorrhage4 more

The pathophysiological mechanisms of aneurysmal subarachnoid haemorrhage (aSAH) involve early brain injury (EBI) and delayed cerebral ischemia (DCI). Several mechanisms contribute to EBI pathogenesis, including cell death, inflammatory response, oxidative stress, excitotoxicity, microcirculatory dysfunction, microthrombosis and cortical spreading depolarization. All are suggested to be linked due to common pathogenic pathways and direct interaction. Despite advances in research of diagnostics and treatment strategies, brain injury remains the major cause of death and disability in SAH patients. There is no sufficient treatment of SAH and its devastating consequences known so far. Developing and improving diagnostic methods to monitor SAH patients and to evaluate efficacy of treatment strategies are essential in SAH research. These include neuroimaging, biomarkers, and other parameters such as invasive multimodal neuromonitoring and intraoperative electrophysiological monitoring. Cerebral vasospasm (CV) - mostly responsible for DCI - can be depicted on angiograms. Altogether, tremendous efforts have been taken to conquer the occurrence and sustainability of CV. The mortality of patients suffering aSAH rises up to 50% if the patients' condition is critical (Hunt&Hess (HH) Grade 5, WFNS Grade 5, modified Fisher Grade 4). Reports of beneficial outcome in patients with pre-existing CSF shunting have been published. The hypothesis of early CSF reapplication to the bloodstream, in order to prevent CV seems to be positively approved by the mentioned reports. Nevertheless, no data could be found on the mechanisms of action in this phenomenon. To confirm the presence of interaction of the mechanisms of EBI and evaluate the application of cerebrospinal fluid (CSF), a pilot clinical trial was planned. Due to the lack of validated animal models for aSAH it is necessary to perform the trial first-in-human. A pilot (proof of concept) trial - is done through inclusion of 10 patients with severe aSAH (≥HH4). According to clinical guidelines, these patients receive external ventricular drainages in order to drain CSF and lower intracranial pressure. An interim analysis of data will be performed after inclusion and treatment of 5 patients. Blood-/CSF-sampling for further analysis will be collected before, during and after treatment according to the study protocol.

Recruiting18 enrollment criteria

Minocycline for Aneurysmal Subarachnoid Hemorrhage (MASH)

AneurysmRuptured4 more

Previous work has demonstrated patients presenting with ruptured aneurysms that develop radiographic and clinical vasospasm have a higher permeability of the blood brain membrane. Matrix metalloproteinase 9 (MMP9) has been studied and recently implicated in both the pathogenesis of the blood brain barrier breakdown and vasogenic edema of ischemia strokes, and is suggested to be an accurate biomarker to predict the onset of cerebral vasospasm after subarachnoid hemorrhage. The therapeutic benefit of minocycline, an MMP9 inhibitor, has been investigated in ischemic stroke population, however its role in the treatment of cerebral vasospasm from ruptured aneurysms remains unknown. Our project has two main goals: to further confirm MMP9 has a reliable biomarker for the onset of cerebral vasospasm, and secondarily to investigate any possible therapeutic benefit that minocycline has in the vasospasm population. Vasospasm continues to be one of the major contributors of morbidity and mortality in the ruptured aneurysm population, and close monitoring of the neurologic exam during the 'vasospasm window' usually requires two weeks in the intensive care unit in most academic settings. As such, if we are better able to predict which patients are at risk of developing vasospasm based on MMP9 levels, we will be better able to anticipate the need for intervention and therefore mitigate the risk of vasospasm induced ischemic strokes, ultimately resulting in better outcomes in the ruptured aneurysm population. Further, if we are able to identify minocycline as a therapeutic agent to deter, or lessen the severity of vasospasm, we can possibly improve neurologic outcomes, decrease hospital stays, ultimately providing an improved and more cost-effective treatment strategy to our patients.

Active2 enrollment criteria

Acetaminophen in aSAH to Inhibit Lipid Peroxidation and Cerebral Vasospasm

Aneurysmal Subarachnoid HemorrhageCerebral Vasospasm

The objective of this study is to determine whether acetaminophen (APAP), N-acetylcysteine (NAC), and APAP in combination with NAC will inhibit lipid peroxidation in aneurysmal subarachnoid hemorrhage (aSAH), utilizing F2-IsoPs as biomarkers for lipid peroxidation.

Active24 enrollment criteria

Variability in Transcranial Doppler Technique in Neuro-Critical Care Patients

Cerebral AneurysmStroke6 more

This study aims to determine the inter- and intra-variability of Transcranial Doppler (TCD) ultrasound in neuro-critical care patients who are planned for consecutive daily TCD evaluations.

Recruiting8 enrollment criteria
12...7

Need Help? Contact our team!


We'll reach out to this number within 24 hrs