Focused Ultrasound Pallidotomy for Dyskinetic Cerebral Palsy in Pediatric and Young Adult Subjects...
Cerebral PalsyDyskinetic1 moreThe primary objective of the proposed study is to evaluate the safety of ExAblate Transcranial MRgFUS as a tool for creating bilateral or unilateral lesions in the globus pallidus (GPi) in patients with treatment-refractory secondary dystonia due to dyskinetic cerebral palsy
Accelerated TMS for Focal Hand Dystonia
Isolated Focal Hand DystoniaThis study aims to investigate the impact of accelerated transcranial magnetic stimulation (TMS) on brain function and behavior in patients with focal hand dystonia. Previous research demonstrated that individualized TMS improved dystonic behavior after one session. Building on this, the current study administers four TMS sessions in a day, with assessments conducted on the same day, two weeks, and twelve weeks after each session. The research involves 10 in-person visits and focuses on functional MRI brain scans and writing behavior analysis. The potential risk of seizures from TMS is mitigated through careful screening, adhering to safety guidelines. The study's main benefit is enhancing dystonic behavior and deepening the understanding of brain changes caused by TMS in focal hand dystonia, paving the way for further advancements in clinical therapy for this condition.
Assessment of Long-term Clinical Response to BoNT in Cervical Dystonia
Cervical DystoniaThe goal of this retrospective, international, multi-center chart abstraction is to learn about the long-term impact of product-specific immunogenicity-related factors in different botulinum neurotoxin type A formulations in patients suffering from cervical dystonia. The main question it aims to answer is: Do complex-containing (CC) botulinum toxin formulations impact the long-term clinical outcome in cervical dystonia patients compared to a complex-free (CF) formulation? Researchers will compare differences observed in years 2 and 7 between two toxin groups, i.e., botulinum neurotoxins type A containing complexing proteins (CC) and without complexing proteins (CF).
Characterization of Clinical Phenotypes of Laryngeal Dystonia and Voice Tremor
Laryngeal DystoniaSpasmodic Dysphonia1 moreThe researchers will systematically evaluate current and novel clinical voice assessment tools and measures to elucidate distinct clinical phenotypes of those with laryngeal dystonia and voice tremor.
Sensorimotor Integration in Monogenic Parkinson-dystonia Syndromes
ParkinsonDystonia5 moreHereditary Parkinson and dystonia syndromes are rare, as are people who carry the predisposition for Parkinson or dystonia but do not have symptoms. It is particularly important to study these people because they are a good model for understanding the development of common non-hereditary Parkinson's and dystonia. To do this, the investigators want to look at how the brain works and how different areas of the brain communicate with each other. The investigators want to identify differences in brain regions connecting perception and action between mutation carriers that develop clinical symptoms and those who stay healthy in different subgroups of inherited Parkinson-dystonia syndromes. Mutation carriers with and without symptoms of three different inherited Parkinson-dystonia syndromes will be investigated at their homes with the help of a mobile examination unit. To detect even subtle signs, which the mutation carriers might not even be aware of, the investigators will use a detailed video-based and -documented movement examination and a non-invasive magnetic stimulation technique that investigates how a sensory, i.e., electrical stimulus can influence the motor response in a hand muscle. Our study will allow the investigators, on the one hand, to define specific markers that protect some mutation carriers from having clinical symptoms and, on the other hand, to identify neurophysiological characteristics that all mutation carriers share whether or not they have clinical symptoms. These are important information for a better understanding of the basis of these disorders and for the development of new treatment strategies, which can also be transferred to genetically-undefined Parkinson's and dystonia syndromes. Through this study, large groups of mutation carriers that have received an in-depth clinical and neurophysiological examination and can be investigated longitudinally in future studies will be build up.
Efficacy and Safety of Radiofrequency Pallidotomy in the Management of Dystonia
DystoniaGeneralized dystonia is treated with pallidotomy. This is based on observational data which is significantly limited by publication bias and there are no RCTs. The case reports focus on successful outcomes and case series have an inherent selection bias. Bilateral pallidotomy has been used in our institute in a series of patients with generalized and segmental dystonia and have been seen to show good efficacy. However, the existing literature suggests that it is also associated with dysphagia and dysarthria in some cases and thus simultaneous bilateral pallidotomy is not preferred in several centres. However, our center routinely performs simultaneous bilateral pallidotomy. The response rates and compliations of the procedure have not been systematically studied in RCT and we need to generate data on the efficacy and safety of Pallidotomy on generalized and segmental dystonia. This randomized controlled trial will fill the void in knowledge in this field.
Abbott DBS Post-Market Study of Outcomes for Indications Over Time
Movement DisordersParkinson Disease5 moreThe purpose of this international study is to evaluate long-term safety and effectiveness of Abbott deep brain stimulation (DBS) systems for all indications, including Parkinson's disease, essential tremor or other disabling tremor and dystonia.
Laryngeal Vibro-tactile Stimulation as a Non-invasive Symptomatic Treatment for Spasmodic Dysphonia...
Adductor Spasmodic DysphoniaAbductor Spastic Dysphonia1 moreThe general aim of the research is to provide scientific evidence that vibro-tactile stimulation (VTS) represents a non-invasive form of neuromodulation that can induce measurable improvements in the speech of patients with laryngeal dystonia (LD) - also called spasmodic dysphonia (SD).
Deep Brain Stimulation Surgery for Movement Disorders
Parkinson's DiseaseEssential Tremor1 moreBackground: - Deep brain stimulation (DBS) is an approved surgery for certain movement disorders, like Parkinson's disease, that do not respond well to other treatments. DBS uses a battery-powered device called a neurostimulator (like a pacemaker) that is placed under the skin in the chest. It is used to stimulate the areas of the brain that affect movement. Stimulating these areas helps to block the nerve signals that cause abnormal movements. Researchers also want to record the brain function of people with movement disorders during the surgery. Objectives: To study how DBS surgery affects Parkinson s disease, dystonia, and tremor. To obtain information on brain and nerve cell function during DBS surgery. Eligibility: - People at least 18 years of age who have movement disorders, like Parkinson's disease, essential tremor, and dystonia. Design: Researchers will screen patients with physical and neurological exams to decide whether they can have the surgery. Patients will also have a medical history, blood tests, imaging studies, and other tests. Before the surgery, participants will practice movement and memory tests. During surgery, the stimulator will be placed to provide the right amount of stimulation for the brain. Patients will perform the movement and memory tests that they practiced earlier. After surgery, participants will recover in the hospital. They will have a followup visit within 4 weeks to turn on and adjust the stimulator. The stimulator has to be programmed and adjusted over weeks to months to find the best settings. Participants will return for followup visits at 1, 2, and 3 months after surgery. Researchers will test their movement, memory, and general quality of life. Each visit will last about 2 hours.
Long-term Outcome of DBS Versus Botulinum Toxin Treatment in Cervical Dystonia
Cervical DystoniaCervical dystonia (CD) is the most common isolated dystonia in adults. Cervical dystonia symptoms can in most patients be managed well by botulinum toxin (BTX) injections, and supporting treatment measures. However, one-fifth to one-third of patients do not obtain sufficient relief from long-term BTX therapy, resulting in reduced quality of life. Deep brain stimulation (DBS) is a treatment method in which electrodes are surgically implanted permanently in the brain to modulate brain networks and function. In cervical dystonia, DBS of the postero-ventral part of the internal globus pallidus (GPi-DBS) has been established as an effective treatment for severe cases. However, the outcome of GPi-DBS in cervical dystonia has been reported mostly in some smaller series with up to 3 years follow-up. Thus, there is a lack of documentation of outcome of GPi-DBS in CD beyond 3 years of treatment and in larger patient materials. In this study the investigators will perform a long-term follow-up study of patients who were operated with a DBS-device targeting the GPi bilaterally, and who have been treated with chronic GPi-DBS for a minimum of 3 years. The investigators will measure the severity of symptom burden and quality of life with validated rating scales. The investigators will compare this DBS-treated cohort with an age- and gender matched group of CD patients who are receiving the standard treatment with botulinum neurotoxin (BoNT) injections and have been treated for at least 3 years as well. The investigators hypothesize that the DBS-treated group will have a significantly lower burden of symptoms at long-term follow-up than the BoNT treated group.