Brentuximab Vedotin + Rituximab as Frontline Therapy for Pts w/ CD30+ and/or EBV+ Lymphomas
Adult Grade III Lymphomatoid GranulomatosisAdult Nasal Type Extranodal NK/T-cell Lymphoma116 moreThe purpose of this study is to evaluate how safe and effective the combination of two different drugs (brentuximab vedotin and rituximab) is in patients with certain types of lymphoma. This study is for patients who have a type of lymphoma that expresses a tumor marker called CD30 and/or a type that is associated with the Epstein-Barr virus (EBV-related lymphoma) and who have not yet received any treatment for their cancer, except for dose-reduction or discontinuation (stoppage) of medications used to prevent rejection of transplanted organs (for those patients who have undergone transplantation). This study is investigating the combination of brentuximab vedotin and rituximab as a first treatment for lymphoma patients
Tanespimycin and Bortezomib in Treating Patients With Advanced Solid Tumors or Lymphomas
Adult Grade III Lymphomatoid GranulomatosisAIDS-related Peripheral/Systemic Lymphoma56 moreThis phase I trial is studying the side effects and best dose of giving tanespimycin together with bortezomib in treating patients with advanced solid tumors or lymphomas. (Accrual for lymphoma patients closed as of 11/27/09) Drugs used in chemotherapy, such as tanespimycin, work in different ways to stop cancer cells from dividing so they stop growing or die. Bortezomib may stop the growth of cancer cells by blocking the enzymes necessary for their growth. It may also increase the effectiveness of tanespimycin by making cancer cells more sensitive to the drug. Combining tanespimycin with bortezomib may kill more cancer cells.
T Cells Expressing a Fully-Human Anti-CD30 Chimeric Antigen Receptor for Treating CD30-Expressing...
LymphomaLarge-Cell10 moreBackground: Improved treatments for a variety of treatment-resistant, TNFRSF8 (CD30)-expressing malignancies including Hodgkin lymphoma, anaplastic large cell lymphoma, and other CD30- expressing lymphomas are needed. T cells can be genetically modified to express chimeric antigen receptors (CARs) that specifically target malignancy-associated antigens. Autologous T cells genetically modified to express CARs targeting the B-cell antigen B-lymphocyte antigen CD19 (CD19) have caused complete remissions in a small number of patients with lymphoma. These results demonstrate that CAR-expressing T cells can have anti-lymphoma activity in humans. CD30 expression can be easily detected by immunohistochemistry on lymphoma cells, which allows selection of CD30-expressing malignancies for treatment. CD30 is not known to be expressed by normal cells except for a small number of activated lymphocytes. We have constructed a novel fully-human anti-CD30 CAR that can specifically recognize CD30-expressing target cells in vitro and eradicate CD30-expressing tumors in mice. This particular CAR has not been tested before in humans. Possible toxicities include cytokine-associated toxicities such as fever, hypotension, and neurological toxicities. Elimination of a small number of normal activated lymphocytes is possible, and unknown toxicities are also possible. Objectives: Primary -Determine the safety and feasibility of administering T-cells expressing a novel fully human anti-CD30 CAR to patients with advanced CD30-expressing lymphomas. Eligibility: Patients must have anaplastic large cell lymphoma, peripheral T-cell lymphoma not otherwise specified, diffuse large B-cell lymphoma not otherwise specified, primary mediastinal B-cell lymphoma, grey zone lymphoma, enteropathy associated T-cell lymphoma, or extranodal natural killer (NK)/T-cell lymphoma, nasal type Patients must have malignancy that is both measurable on a computed tomography (CT) scan with a largest diameter of at least 1.5 cm and possessing increased metabolic activity detectable by positron emission tomography (PET) scan. Alternatively, patients with lymphoma detected by flow cytometry of bone marrow are eligible. Patients must have a creatinine of 1.6 mg/dL or less and a normal cardiac ejection fraction. An Eastern Cooperative Oncology Group (ECOG) performance status of 0-2 is required. No active infections are allowed including evidence of active human immunodeficiency virus (HIV), hepatitis B, or hepatitis C. At the time of protocol enrollment patients must be seronegative for cytomegalovirus (CMV) by antibody testing or must have a negative blood CMV polymerase chain reaction (PCR). Absolute neutrophil count greater than or equal to 1000/micro L, platelet count greater than or equal to 55,000/micro L, hemoglobin greater than or equal to 8g/dL Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) less or equal to 3 times the upper limit of the institutional normal unless liver involvement by malignancy is demonstrated. At least 14 days must elapse between the time of any prior systemic treatment (including corticosteroids above 5 mg/day of prednisone or equivalent corticosteroid dose) and initiation of required leukapheresis. Clear CD30 expression must be detected on 75% or more of malignant cells from either bone marrow or lymphoma mass by flow cytometry or immunohistochemistry. The patient s malignancy will need to be assessed for CD30 expression by flow cytometry or immunohistochemistry performed at the National Institutes of Health (NIH). If unstained, paraffin-embedded bone marrow or lymphoma sections are available from prior biopsies, these can be used to determine CD30 expression by immunohistochemistry; otherwise, patients will need to come to the NIH for a biopsy to determine CD30 expression. The sample for CD30 expression can come from a biopsy obtained at any time before enrollment, unless the patient has received a prior anti-CD30 monoclonal antibody, in which case the sample must come from a biopsy following completion of the most recent anti-CD30 monoclonal antibody treatment. Eligible patients with diffuse large B-cell lymphoma or primary mediastinal B-cell lymphoma must have received 2 prior treatment regimens at least 1 of which included an anthracycline and an anti-CD20 monoclonal antibody. Patients who have never had an allogeneic hematopoietic stem cell transplant as well as patients who have had a 9/10 or 10/10 human leukocyte antigen (HLA)-matched sibling or a 9/10 or 10/10 HLA- matched unrelated donor hematopoietic stem cell transplant are potentially eligible. Women who are pregnant or plan to become pregnant will be excluded.
Pegaspargase and Methotrexate Based Regimens for Newly Diagnosed Extranodal NK/T Cell Lymphoma
Nasal Type Extranodal NK/T-Cell LymphomaExtranodal NK/T cell lymphoma is an aggressive tumor with higher incidence in Asia.Traditional CHOP/CHOP-like regiment can't produce satisfied outcome for the patients. Asparaginase-based treatment has been demonstrated as promising response rate and survival superiority. Stage-specified regimen may bring out exciting efficacy with good safety.
Cyclophosphamide for Prevention of Graft-Versus-Host Disease After Allogeneic Peripheral Blood Stem...
Accelerated Phase Chronic Myelogenous LeukemiaAdult Acute Lymphoblastic Leukemia in Remission66 moreThis phase II trial studies how well cyclophosphamide works in preventing chronic graft-versus-host disease after allogeneic peripheral blood stem cell transplant in patients with hematological malignancies. Giving chemotherapy and total-body irradiation before transplantation helps stop the growth of cancer cells and prevents the patient's immune system from rejecting the donor's stem cells. Healthy stem cells from a donor that are infused into the patient help the patient's bone marrow make blood cells; red blood cells, white blood cells, and platelets. Sometimes, however, the transplanted donor cells can cause an immune response against the body's normal cells, which is called graft-versus-host disease (GVHD). Giving cyclophosphamide after transplant may prevent this from happening or may make chronic GVHD less severe.
Alisertib in Treating Patients With Relapsed or Refractory Peripheral T-Cell Non-Hodgkin Lymphoma...
Adult Nasal Type Extranodal NK/T-Cell LymphomaAnaplastic Large Cell Lymphoma5 moreThis phase II trial studies how well alisertib works in treating patients with peripheral T-cell non-Hodgkin lymphoma that has come back after a period of improvement or has not responded to treatment. Alisertib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
Donor T Cells After Donor Stem Cell Transplant in Treating Patients With Hematologic Malignancies...
Accelerated Phase Chronic Myelogenous LeukemiaAdult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities62 moreThis pilot phase II trial studies how well giving donor T cells after donor stem cell transplant works in treating patients with hematologic malignancies. In a donor stem cell transplant, the donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Giving an infusion of the donor's T cells (donor lymphocyte infusion) after the transplant may help increase this effect.
MK2206 in Treating Younger Patients With Recurrent or Refractory Solid Tumors or Leukemia
Accelerated Phase Chronic Myelogenous LeukemiaAcute Leukemias of Ambiguous Lineage52 moreThis phase I trial is studying the side effects, best way to give, and best dose of Akt inhibitor MK2206 (MK2206) in treating patients with recurrent or refractory solid tumors or leukemia. MK2206 may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
Study of KW-0761 in Subjects With CCR4-positive Peripheral T/NK-cell Lymphoma
Peripheral T/NK-cell LymphomaThe purpose of this study is to evaluate the efficacy of KW-0761 intravenously administered eight times at one-week intervals in patients with CCR4-positive peripheral T/NK-cell lymphoma. The primary objective is to assess the antitumor effect in terms of best overall response, while the secondary objectives are to assess the antitumor effect in terms of best response by disease lesion, to assess the progression-free survival and to assess the overall survival. The safety and pharmacokinetic profiles of KW-0761 will be also evaluated.
High-Dose Busulfan and High-Dose Cyclophosphamide Followed By Donor Bone Marrow Transplant in Treating...
Accelerated Phase Chronic Myelogenous LeukemiaAdult Acute Lymphoblastic Leukemia in Remission71 moreRATIONALE: Giving high doses of chemotherapy drugs, such as busulfan and cyclophosphamide, before a donor bone marrow transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Giving cyclosporine, methylprednisolone, and methotrexate after transplant may stop this from happening. PURPOSE: This clinical trial studies high-dose busulfan and high-dose cyclophosphamide followed by donor bone marrow transplant in treating patients with leukemia, myelodysplastic syndrome, multiple myeloma, or recurrent Hodgkin or Non-Hodgkin lymphoma.