An Investigational Scan (68Ga-DOTATATE PET/CT) in Diagnosing Pediatric Metastatic Neuroendocrine...
GanglioneuroblastomaGanglioneuroma1 moreThis trial studies how well an investigational scan called 68Ga-DOTATATE PET/CT works in diagnosing pediatric patients with neuroendocrine tumors that have spread to other places in the body (metastatic). A neuroendocrine tumor is an abnormal growth of neuroendocrine cells, which are cells resembling nerve cells and hormone-producing cells. 68Ga-DOTATATE is a radioactive substance called a radiotracer that when used with PET/CT scans, may work better than standard of care MIBG scans in diagnosing pediatric metastatic neuroendocrine tumors and targeting them with radiation therapy.
Biomarkers in Tumor Tissue Samples From Patients With Newly Diagnosed Neuroblastoma or Ganglioneuroblastoma...
GanglioneuroblastomaLocalized Resectable Neuroblastoma4 moreThis research trial studies biomarkers in tumor tissue samples from patients with newly diagnosed neuroblastoma or ganglioneuroblastoma. Studying samples of tumor tissue from patients with cancer in the laboratory may help doctors identify and learn more about biomarkers related to cancer.
SIOPEN BIOPORTAL, An International Registry Linked to a Virtual Biobank for Patients With Peripheral...
NeuroblastomaGanglioneuroblastoma1 moreThe SIOPEN BIOPORTAL is a prospective non-therapeutic multi-centre international study aimed at developing an international Registry linked to a Virtual Biobank for all the patients with peripheral neuroblastic tumor within countries of the SIOPEN network. The overall aim of this study is to provide a GDPR-compliant framework to collect basic clinical annotations, biological and genetic features and information about the location on biospecimens for all the patients with a peripheral neuroblastic tumor including neuroblastoma, ganglioneuroblastoma and ganglioneuroma in the SIOPEN network. This study will support data and sample management and intensify cross-borders data and sample sharing fostering translational and clinical research. The post-hoc hypothesis formulated based on the data generated in this study will be used as statistical basis for future precision medicine programs based on improved biological characterization, patient stratification and therapeutic management.
Irinotecan Hydrochloride and Temozolomide With Temsirolimus or Dinutuximab in Treating Younger Patients...
GanglioneuroblastomaRecurrent NeuroblastomaThis randomized phase II trial studies how well irinotecan hydrochloride and temozolomide with temsirolimus or dinutuximab work in treating younger patients with neuroblastoma that has returned or does not respond to treatment. Drugs used in chemotherapy, such as irinotecan hydrochloride and temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Temsirolimus may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Monoclonal antibodies, such as dinutuximab, may find tumor cells and help kill them or carry tumor-killing substances to them. It is not yet known whether giving irinotecan hydrochloride and temozolomide together with temsirolimus or dinutuximab is more effective in treating neuroblastoma.
Adavosertib and Irinotecan Hydrochloride in Treating Younger Patients With Relapsed or Refractory...
Central Nervous System Embryonal Tumor With Rhabdoid FeaturesCentral Nervous System Embryonal Tumor15 moreThis phase I/II trial studies the side effects and best dose of adavosertib and irinotecan hydrochloride in treating younger patients with solid tumors that have come back (relapsed) or that have not responded to standard therapy (refractory). Adavosertib and irinotecan hydrochloride may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.