Repeated Super-Selective Intraarterial Cerebral Infusion of Bevacizumab (Avastin) for Treatment...
Glioblastoma MultiformeBrain TumorThe high-grade malignant brain tumors, glioblastoma multiforme (GBM), comprise the majority of all primary brain tumors in adults. This group of tumors also exhibits the most aggressive behavior, resulting in median overall survival of only 9-12 months. Initial therapy consists of either surgical resection, external beam radiation, or both. All patients experience a recurrence after first-line therapy, so improvements in both first-line and salvage therapy are critical to enhancing quality-of-life and prolonging survival. It is unknown if currently used intravenous (IV) therapies even cross the blood brain barrier (BBB). We have shown in a previous phase I trial that a single Superselective Intraarterial Cerebral Infusion (SIACI) of Bevacizumab (up to 15mg/kg) is safe and effective in the treatment of recurrent GBM. Therefore, this phase I/II clinical research trial is an extension of that trial in that we seek to test the hypothesis that repeated dosing of intra-arterial Bevacizumab is safe and effective in the treatment of newly diagnosed malignant glioma. By achieving the aims of this study we will also determine if repeated intra-arterial Bevacizumab improves progression free and overall survival in newly diagnosed patients. We expect that this project will provide important information regarding the utility of repeated SIACI Bevacizumab therapy for malignant glioma, and may alter the way these drugs are delivered to our patients in the near future.
Genetically Modified T-cells in Treating Patients With Recurrent or Refractory Malignant Glioma...
Recurrent GlioblastomaRecurrent Malignant Glioma6 moreThis phase I trial studies the side effects and best dose of genetically modified T-cell immunotherapy in treating patients with malignant glioma that has come back (recurrent) or has not responded to therapy (refractory). A T cell is a type of immune cell that can recognize and kill abnormal cells in the body. T cells are taken from the patient's blood and a modified gene is placed into them in the laboratory and this may help them recognize and kill glioma cells. Genetically modified T-cells may also help the body build an immune response against the tumor cells.
Temozolomide, Memantine Hydrochloride, Mefloquine, and Metformin Hydrochloride in Treating Patients...
GlioblastomaGliosarcoma1 moreThis phase I trial studies the side effects and best dose of combination chemotherapy in treating patients with glioblastoma multiforme after radiation therapy. Drugs used in chemotherapy, such as temozolomide, memantine hydrochloride, and metformin hydrochloride, work in different ways to stop the growth of tumor cells, either by killing them or stopping them from dividing. Mefloquine may help temozolomide, memantine hydrochloride, and metformin hydrochloride kill more cancer cells by making tumor cells more sensitive to the drug. Giving more than one drug (combination chemotherapy) may kill more tumor cells.
Study of a Drug [DCVax®-L] to Treat Newly Diagnosed GBM Brain Cancer
Glioblastoma MultiformeGlioblastoma5 moreThe primary purpose of the study is to determine the efficacy of an investigational therapy called DCVax(R)-L in patients with newly diagnosed GBM for whom surgery is indicated. Patients must enter screening at a participating site prior to surgical resection of the tumor. Patients will receive the standard of care, including radiation and Temodar therapy and two out of three will additionally receive DCVax-L, with the remaining one third receiving a placebo. All patients will have the option to receive DCVax-L in a crossover arm upon documented disease progression. (note: DCVax-L when used for patients with brain cancer is sometimes also referred to as DCVax-Brain)
Safety, Pharmacokinetics and Efficacy of Paxalisib (GDC-0084) in Newly-diagnosed Glioblastoma
GlioblastomaAdultThis protocol has a 2-part design: This phase 2 study is an open-label, multicenter, dose-escalation and expansion study to assess the safety, tolerability, recommended phase 2 dose (RP2D), pharmacokinetics (PK) and clinical activity of paxalisib in patients with newly-diagnosed glioblastoma (GBM) with unmethylated MGMT promoter status as adjuvant therapy following surgical resection and initial chemoradiation with temozolomide (TMZ).
Phase I EGFR BATs in Newly Diagnosed Glioblastoma
GlioblastomaGlioblastoma MultiformeThis is a phase I trial using EGFR Bi-armed Activated T-cells (BATs) in combination with standard of care temozolomide (TMZ) and radiation (RT) in patients with glioblastoma (GBM). The purpose of the study is to determine a safe dose of EGFR BATs when given with standard of care therapy.
Ibrutinib With Radiation and Temozolomide in Patients With Newly Diagnosed Glioblastoma
GlioblastomaSafety of combination of ibrutinib and radiation at various dose levels in unmethylated o6-methylguanine-DNA-methyltransferase (MGMT) glioblastoma and study of ibrutinib, temozolomide, and radiation combination therapy in methylated MGMT glioblastoma.
Retifanlimab and Epacadostat in Combination With Radiation and Bevacizumab in Patients With Recurrent...
GliomaGlioblastomaIn this study, the investigators propose to combine retifanlimab with radiation therapy (RT) and bevacizumab with or without epacadostat in the treatment of recurrent glioblastoma (GBM). The investigators hypothesize that this combination provides a powerful synergy between RT and immune modulators to produce more robust anti-tumor immune response, induce tumor regression and improve overall survival.
Surgical Tissue Flap to Bypass the Blood Brain Barrier in GBM
GlioblastomaGlioblastoma Multiforme2 moreThis study assesses the safety of using tissue autograft of a pedicled temporoparietal fascial (TPF) or pericranial flap into the resection cavity of newly diagnosed glioblastoma multiforme (GBM) patients. The objective of the study is to demonstrate that this surgical technique is safe in a small human cohort of patients with resected newly diagnosed GBM and may improve progression-free survival (PFS).
Cediranib Maleate and Olaparib Compared to Bevacizumab in Treating Patients With Recurrent Glioblastoma...
Recurrent GlioblastomaThis randomized phase II trial studies how well cediranib maleate and olaparib work compared to bevacizumab in treating patients with glioblastoma that has come back (recurrent). Cediranib maleate and olaparib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Immunotherapy with monoclonal antibodies, such as bevacizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread.