
Super-Selective Intraarterial Cerebral Infusion of Cetuximab (Erbitux) for Treatment of Relapsed/Refractory...
Glioblastoma Multiforme (GBM)ANAPLASTIC ASTROCYTOMA (AOA)2 moreThe high-grade malignant brain tumors, glioblastoma multiforme (GBM) and anaplastic astrocytoma (AA), comprise the majority of all primary brain tumors in adults. Initial therapy consists of either surgical resection, external beam radiation or both. All patients experience a recurrence after first-line therapy, so improvements in both first-line and salvage therapy are critical to enhancing quality-of-life and prolonging survival. It is unknown if currently used intravenous (IV) therapies even cross the blood brain barrier (BBB). Superselective Intraarterial Cerebral Infusion (SIACI) is a technique that can effectively increase the concentration of drug delivered to the brain while sparing the body of systemic side effects. One currently used drug called, Cetuximab (Erbitux) has been shown to be active in human brain tumors but its actual CNS penetration is unknown. This phase I clinical research trial will test the hypothesis that Cetuximab can be safely used by direct intracranial superselective intraarterial infusion up to a dose of 500mg/m2 to ultimately enhance survival of patients with relapsed/refractory GBM/AA. By achieving the aims of this study the investigators will determine the the toxicity profile and maximum tolerated dose (MTD) of SIACI Cetuximab. The investigators expect that this study will provide important information regarding the utility of SIACI Cetuximab therapy for malignant glioma, and may alter the way these drugs are delivered to the investigators patients in the near future.

A Study of MEDI-575 in Subjects With Recurrent Glioblastoma Multiforme
Glioblastoma MultiformeThe primary objective of this Phase II study is to evaluate the progression-free survival at 6 months in adult subjects with a first recurrence of Glioblastoma Multiforme who are treated with MEDI-575.

Thalidomide and Irinotecan in Treating Patients With Glioblastoma Multiforme Who Have Undergone...
Brain and Central Nervous System TumorsRATIONALE: Thalidomide may stop the growth of glioblastoma multiforme by stopping blood flow to the tumor. Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Combining thalidomide with irinotecan may kill any tumor cells remaining after radiation therapy. PURPOSE: Phase II trial to study the effectiveness of combining thalidomide with irinotecan in treating patients who have glioblastoma multiforme that has been treated with radiation therapy.

Boron Neutron Capture Therapy in Treating Patients With Glioblastoma Multiforme or Melanoma Metastatic...
Brain and Central Nervous System TumorsMelanoma (Skin)1 moreRATIONALE: Radiation therapy such as boron neutron capture therapy may kill tumor cells without harming normal tissue. PURPOSE: Phase I/II trial to study the effectiveness of boron neutron capture therapy in treating patients who have glioblastoma multiforme or melanoma metastatic to the brain.

CCI-779 in Treating Patients With Recurrent Glioblastoma Multiforme
Adult Giant Cell GlioblastomaAdult Glioblastoma2 morePhase II trial to study the effectiveness of CCI-779 in treating patients who have recurrent glioblastoma multiforme. Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die.

Radiation Therapy and Tamoxifen in Treating Adults With Newly Diagnosed Supratentorial Glioblastoma...
Brain and Central Nervous System TumorsRATIONALE: Radiation therapy uses high-energy x-rays to damage tumor cells. Drugs such as tamoxifen may make the tumor cells more sensitive to radiation therapy. PURPOSE: Phase II trial to study the effectiveness of combining radiation therapy with tamoxifen in treating patients who have newly diagnosed supratentorial glioblastoma multiforme.

Bi-weekly Temozolomide Plus Bevacizumab for Adult Patients With Recurrent Glioblastoma Multiforme...
Recurrent Glioblastoma MultiformeRecurrent GliosarcomaPrimary objective - to determine the 6-month progression free survival (PFS) of adult patients with recurrent glioblastoma multiforme/gliosarcoma treated with bi-weekly temozolomide plus (Avastin) bevacizumab. Secondary objectives - to determine radiographic response including specialized MRI sequences, safety and overall survival of adult patients with with recurrent glioblastoma multiforme/gliosarcoma treated with bi-weekly temozolomide plus bevacizumab (Avastin). Additionally, tumor DNA (MGMT) analysis as it relates to survival will be evaluated.

Radiation Therapy and Temsirolimus or Temozolomide in Treating Patients With Newly Diagnosed Glioblastoma...
Brain and Central Nervous System TumorsRATIONALE: Radiation therapy uses high-energy x-rays to kill tumor cells. Temsirolimus may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. It is not yet known whether radiation therapy is more effective when given together with temsirolimus or temozolomide in treating patients with glioblastoma. PURPOSE: This randomized phase II trial is studying giving radiation therapy together with temsirolimus to see how well it works compared with giving radiation therapy together with temozolomide in treating patients with newly diagnosed glioblastoma.

A Trial of the Protease Inhibitor Nelfinavir and Concurrent Radiation and Temozolomide in Patients...
GliomaThis phase I trial will determine safety, dose-limiting toxicities (DLT) and maximum tolerable dose (MTD) of the protease inhibitor, Nelfinavir (NFV), when given with chemoradiotherapy as post-operative therapy for glioblastoma multiforme (GBM). Oral NFV is a standard therapy for patients with HIV and the safety of 1250 mg BID NFV is well-established. Case studies have also reported that HIV patients have received radiotherapy for cancer, while on 1250 mg BID NFV. This is the first trial of oral NFV and chemoradiotherapy for GBM patients. Although unacceptable toxicity is unlikely, two NFV dose levels (625, and 1250 mg BID) will be evaluated in a cohort escalation design of 3-6 subjects. At the MTD, 19 additional subjects will be enrolled to generate pilot data on radiographic response and to evaluate further toxicity. A maximum of 31 subjects will be enrolled on the trial.

Study of NPC-08 is to Treat for Newly-Diagnosed Malignant Glioma and Recurrent Glioblastoma Multiforme...
Malignant GliomaThe purpose of this study is to evaluate whether NPC-08 is safety and efficacy in the treatment of newly-diagnosed malignant glioma and recurrent glioblastoma multiforme.