18F-DOPA-PET/MRI Scan in Imaging Elderly Patients With Newly Diagnosed Grade IV Malignant Glioma...
GlioblastomaMalignant GliomaThis phase II trial studies how well fluorodopa F 18-positron emission tomography/magnetic resonance imaging scan (18F-DOPA-PET/MRI) works in imaging elderly patients with newly diagnosed grade IV malignant glioma or glioblastoma during planning for a short course of proton beam radiation therapy. 18F-DOPA is a chemical tracer that highlights certain cells during imaging. PET scan, is a metabolic imaging technique which takes advantage of how tumor cells take up nutrients differently than normal tissue. MRI scans are used to guide radiation therapy for most brain tumors. Hypofractionated proton beam therapy delivers higher doses of radiation therapy over a shorter period of time and may kill more tumor cells and have fewer side effects. Using 18FDOPA-PET scans along with MRI scans may be able to provide the radiation doctor with information on tumor tissue versus normal, healthy tissue and may help the doctor more accurately plan the radiation treatment.
SJDAWN: St. Jude Children's Research Hospital Phase 1 Study Evaluating Molecularly-Driven Doublet...
Anaplastic AstrocytomaAnaplastic Ependymoma83 moreApproximately 90% of children with malignant brain tumors that have recurred or relapsed after receiving conventional therapy will die of disease. Despite this terrible and frustrating outcome, continued treatment of this population remains fundamental to improving cure rates. Studying this relapsed population will help unearth clues to why conventional therapy fails and how cancers continue to resist modern advances. Moreover, improvements in the treatment of this relapsed population will lead to improvements in upfront therapy and reduce the chance of relapse for all. Novel therapy and, more importantly, novel approaches are sorely needed. This trial proposes a new approach that evaluates rational combination therapies of novel agents based on tumor type and molecular characteristics of these diseases. The investigators hypothesize that the use of two predictably active drugs (a doublet) will increase the chance of clinical efficacy. The purpose of this trial is to perform a limited dose escalation study of multiple doublets to evaluate the safety and tolerability of these combinations followed by a small expansion cohort to detect preliminary efficacy. In addition, a more extensive and robust molecular analysis of all the participant samples will be performed as part of the trial such that we can refine the molecular classification and better inform on potential response to therapy. In this manner the tolerability of combinations can be evaluated on a small but relevant population and the chance of detecting antitumor activity is potentially increased. Furthermore, the goal of the complementary molecular characterization will be to eventually match the therapy with better predictive biomarkers. PRIMARY OBJECTIVES: To determine the safety and tolerability and estimate the maximum tolerated dose/recommended phase 2 dose (MTD/RP2D) of combination treatment by stratum. To characterize the pharmacokinetics of combination treatment by stratum. SECONDARY OBJECTIVE: To estimate the rate and duration of objective response and progression free survival (PFS) by stratum.
Ruxolitinib With Radiation and Temozolomide for Grade III Gliomas and Glioblastoma
GliomaGlioblastomaThe purpose of this study is to test how well the drug works, safety and tolerability of an investigational drug called Ruxolitinib in gliomas and glioblastomas, when combined with standard treatment for brain cancer, temozolomide and radiation. Ruxolitinib is an experimental drug that works by targeting proteins in cells and stops them from growing. Ruxolitinib is experimental because it is not approved by the Food and Drug Administration (FDA) for the treatment of gliomas or glioblastomas Temozolomide works by damaging the DNA of tumor cells so that they cannot divide properly. Some tumor cells can repair that damage and therefore be resistant to temozolomide.
Phase I Study of Marizomib + Panobinostat for Children With DIPG
Diffuse Intrinsic Pontine GliomaPediatric Brainstem Glioma5 moreThis research study is evaluating the safety, tolerability and preliminary efficacy of the drugs marizomib and panobinostat in pediatric patients with diffuse intrinsic pontine glioma (DIPG). The names of the study drugs involved in this study are: Marizomib Panobinostat
D2C7-IT With Atezolizumab for Recurrent Gliomas
Malignant GliomaThis is a phase 1 study of atezolizumab in combination with D2C7-IT, a dual-specific monoclonal antibody (mAB) with a high affinity for both EGFRwt- and EGFRvIII-expressing cells, in patients with recurrent World Health Organization (WHO) grade IV malignant glioma at the Preston Robert Tisch Brain Tumor Center (PRTBTC) at Duke.
Selinexor in Treating Younger Patients With Recurrent or Refractory Solid Tumors or High-Grade Gliomas...
Malignant GliomaRecurrent Brain Neoplasm8 moreThis phase I trial studies the side effects and best dose of selinexor in treating younger patients with solid tumors or central nervous system (CNS) tumors that have come back (recurrent) or do not respond to treatment (refractory). Drugs used in chemotherapy, such as selinexor, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading.
Vorinostat and Temsirolimus With or Without Radiation Therapy in Treating Younger Patients With...
Diffuse Intrinsic Pontine GliomaThis phase I trial studies the side effects and best dose of temsirolimus when given together with vorinostat and with or without radiation therapy in treating younger patients with newly diagnosed or progressive diffuse intrinsic pontine glioma, a tumor that arises from the middle portion of the brain stem. Vorinostat and temsirolimus may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Giving temsirolimus and vorinostat with or without radiation therapy may be a better treatment for younger patients with diffuse intrinsic pontine glioma.
Vaccine Therapy for the Treatment of Newly Diagnosed Glioblastoma Multiforme
Glioblastoma MultiformeGlioblastoma4 moreThe purpose of this research study is to determine if an investigational dendritic cell vaccine, called pp65 DC, is effective for the treatment of a specific type of brain tumor called glioblastoma (GBM) when given with stronger doses of routine chemotherapy.
Trial of Panobinostat in Children With Diffuse Intrinsic Pontine Glioma
GliomaThis phase I trial studies the side effects and best dose of panobinostat in treating younger patients with diffuse intrinsic pontine glioma (DIPG). Panobinostat may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Stratum 1 treats patients with DIPG that has returned or gotten worse (progressed). Stratum 2 treats patients with DIPG or H3K27+Thalamic Diffuse Malignant Glioma (DMG) that has not yet gotten worse. Currently, only Stratum 2 is enrolling patients.
Study of MEK162 for Children With Low-Grade Gliomas
Low-Grade GliomasMalignant Neoplasms2 moreThe goal of this clinical trial is to study the drug MEK162 in children with a brain tumor call low-grade glioma, as well as in children with other tumors in which a specific growth signal is abnormally turned on. The main questions it aims to answer are: What is the correct dose of MEK162 in children? What are the side effects of MEK162 in children? Is MEK162 effective in children with low-grade glioma? Participants on the study receive MEK162 by mouth twice daily for up to 2 years.