search

Active clinical trials for "Glioma"

Results 241-250 of 1149

Ulixertinib in Treating Patients With Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic...

Advanced Malignant Solid NeoplasmRecurrent Ependymal Tumor34 more

This phase II Pediatric MATCH trial studies how well ulixertinib works in treating patients with solid tumors that have spread to other places in the body (advanced), non-Hodgkin lymphoma, or histiocytic disorders that have a genetic alteration (mutation) in a signaling pathway called MAPK. A signaling pathway consists of a group of molecules in a cell that control one or more cell functions. Genes in the MAPK pathway are frequently mutated in many types of cancers. Ulixertinib may stop the growth of cancer cells that have mutations in the MAPK pathway.

Active57 enrollment criteria

Clinical Benefit of Using Molecular Profiling to Determine an Individualized Treatment Plan for...

GliomaGlioma of Brain6 more

This is a 2 strata pilot trial within the Pacific Pediatric Neuro-Oncology Consortium (PNOC). The study will use a new treatment approach based on each patient's tumor gene expression, whole-exome sequencing (WES), targeted panel profile (UCSF 500 gene panel), and RNA-Seq. The current study will test the efficacy of such an approach in children with High-grade gliomas HGG.

Active14 enrollment criteria

Carboxylesterase-Expressing Allogeneic Neural Stem Cells and Irinotecan Hydrochloride in Treating...

Recurrent Anaplastic AstrocytomaRecurrent Anaplastic Oligoastrocytoma5 more

This phase I trial studies the side effects and best dose of carboxylesterase-expressing allogeneic neural stem cells when given together with irinotecan hydrochloride in treating patients with high-grade gliomas that have come back. Placing genetically modified neural stem cells into brain tumor cells may make the tumor more sensitive to irinotecan hydrochloride. Irinotecan hydrochloride may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving carboxylesterase-expressing allogeneic neural stem cells and irinotecan hydrochloride may be a better treatment for high-grade gliomas.

Active41 enrollment criteria

A Dose-Escalation Study in Participants With Recurrent Malignant Glioma

Glioma

This is a study of oral LY2157299 as monotherapy and in combination with lomustine in participants with recurrent malignant glioma.

Active19 enrollment criteria

Sorafenib, Valproic Acid, and Sildenafil in Treating Patients With Recurrent High-Grade Glioma

GlioblastomaRecurrent Adult Brain Neoplasm2 more

The purpose of this research study is to test the safety, tolerability, and effectiveness of the combination of three drugs, sorafenib (Nexavar®), valproic acid (Depakote®), and sildenafil (Viagra®), when used to treat high-grade glioma, a type of brain tumor.

Active49 enrollment criteria

Adavosertib and Local Radiation Therapy in Treating Children With Newly Diagnosed Diffuse Intrinsic...

Anaplastic AstrocytomaAnaplastic Oligoastrocytoma5 more

This phase I trial studies the side effects and the best dose of adavosertib when given together with local radiation therapy in treating children with newly diagnosed diffuse intrinsic pontine gliomas. Adavosertib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Radiation therapy uses high energy x-rays, gamma rays, neutrons, protons, or other sources to kill tumor cells and shrink tumors. Giving adavosertib with local radiation therapy may work better than local radiation therapy alone in treating diffuse intrinsic pontine gliomas.

Active41 enrollment criteria

Olaparib in Treating Patients With Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma,...

Advanced Malignant Solid NeoplasmAnn Arbor Stage III Childhood Non-Hodgkin Lymphoma34 more

This phase II Pediatric MATCH trial studies how well olaparib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with defects in deoxyribonucleic acid (DNA) damage repair genes that have spread to other places in the body (advanced) and have come back (relapsed) or do not respond to treatment (refractory). Olaparib is an inhibitor of PARP, an enzyme that helps repair DNA when it becomes damaged. Blocking PARP may help keep cancer cells from repairing their damaged DNA, causing them to die. PARP inhibitors are a type of targeted therapy.

Active62 enrollment criteria

Temozolomide Chronotherapy for High Grade Glioma

GliomaGlioblastoma Multiforme

Temozolomide (TMZ) is the chemotherapy drug approved by the FDA to increase survival in glioblastoma (GBM) patients beyond surgical resection and radiation therapy alone. Give its activity in astrocytomas, TMZ is commonly used in grade III anaplastic astrocytoma (AA) as well. Both grade III AA and grade IV GBM are high grade gliomas (HGG). The short half-life of this drug and known oscillations in DNA damage repair make it an ideal candidate for chronotherapy. Chronotherapy is the improvement of treatment outcomes by minimizing treatment toxicity and maximizing efficacy through delivery of a medication according to the timing of biological rhythms within a patient. Chronotherapy has improved outcomes through the reduction of side effects and increase in anti-tumor activity for a variety of cancers, but has never been applied to the treatment of gliomas. Based on the preliminary preclinical data for chronotherapeutic TMZ treatment of intracranial glioma xenografts and the success of chronotherapy in the treatment of other cancers, the invesitgators hypothesize that the timing of TMZ treatment will alter its efficacy and toxicity.

Active6 enrollment criteria

Trametinib for Pediatric Neuro-oncology Patients With Refractory Tumor and Activation of the MAPK/ERK...

Low-grade GliomaPlexiform Neurofibroma1 more

This is a phase 2, open-label, interventional clinical trial that will study the response rate of pediatric glioma and plexiform neurofibroma (PN) to oral administration of trametinib. Patients meeting all inclusion criteria for a given study group will receive the study medication at a daily dose of 0.025 mg/kg up to a total of 18 cycles, in 28-day cycles. A total of 150 patients will be recruited as part of this clinical study. Patients aged between 1 month (corrected age) and 25 years old will be eligible, in order to include a maximum of patients affected by low-grade glioma (LGG) and PN. This study includes four groups: patients with neurofibromatosis type 1 (NF1) and LGG, NF1 patients with PN, patients with LGG with a B-Raf Serine/Threonine-protein Kinase/Proto-oncogene Encoding B-Raf (BRAF) fusion and patients with glioma of any grade with activation of the Mitogen-activated Protein Kinase/Extracellular Signal-regulated Kinases (MAPK/ERK) pathway. All patients except patients with PN must have failed at least one line of treatment. The study will also explore the molecular mechanisms behind tumor development, progression and resistance to treatment. Furthermore, this study will also explore important aspects for patients with brain tumors by including assessment of quality of life and neuropsychological evaluation.

Active48 enrollment criteria

Pembrolizumab (MK-3475) in Patients With Recurrent Malignant Glioma With a Hypermutator Phenotype...

GliomaRecurrent Malignant Glioma

The purpose of this study is to test if the study drug called pembrolizumab could control the growth or shrink the cancer but it could also cause side effects. Researchers hope to learn if the study drug will shrink the cancer by half, or prevent it from growing for at least 6 months. Pembrolizumab is an antibody that targets the immune system and activates it to stop cancer growth and/or kill cancer cells.

Active43 enrollment criteria
1...242526...115

Need Help? Contact our team!


We'll reach out to this number within 24 hrs