INO-5401 and INO-9012 Delivered by Electroporation (EP) in Combination With Cemiplimab (REGN2810)...
GlioblastomaPhase 1/2 trial to evaluate safety, immunogenicity and preliminary efficacy of INO-5401 and INO-9012 in combination with cemiplimab (REGN2810), with radiation and chemotherapy, in subjects with newly-diagnosed glioblastoma (GBM).
Ribociclib (LEE011) in Preoperative Glioma and Meningioma Patients
Glioblastoma MultiformeMeningiomaIn the proposed trial, patients will be administered ribociclib prior to surgical resection of their tumor. Patients will be enrolled in time-intervals sequentially (non-randomized). All patients will be orally-administered 5 doses of LEE011 (900 mg/d) with the final dose occurring at one of 3 intervals before brain tumor resection.
Feasibility of Individualized Therapy for Recurrent Glioblastoma
Recurrent GlioblastomaThe current study will test the ability and likelihood of successfully implementing individualized combination treatment recommendations for adult patients with surgically-resectable recurrent glioblastoma in a timely fashion. Collected tumor tissue and blood will be examined using a new diagnostic testing called University of California, San Francisco (UCSF) 500 Cancer Gene Panel which is done at the UCSF Clinical Cancer Genomics Laboratory. The UCSF 500 Cancer Gene Panel will help identify genetic changes in the DNA of a patient's cancer, which helps oncologists improve treatment by identifying targeted therapies.
18F-FDG PET and Osimertinib in Evaluating Glucose Utilization in Patients With EGFR Activated Recurrent...
EGFR Gene AmplificationEGFR Gene Mutation4 moreThis phase II trial studies how well fludeoxyglucose F-18 (18F-FDG) positron emission tomography (PET) and osimertinib works in evaluating glucose utilization in patients with EGFR activated glioblastoma. Osimertinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. 18F-FDG PET imaging may help to detect changes in tumor glucose utilization, which may allow investigators to obtain an early read out on the impact of osimertinib on recurrent glioblastoma patients whose tumors have EGFR activation.
Veliparib, Radiation Therapy, and Temozolomide in Treating Patients With Newly Diagnosed Malignant...
Anaplastic AstrocytomaGlioblastoma1 moreThis phase II trial studies how well veliparib, radiation therapy, and temozolomide work in treating patients with newly diagnosed malignant glioma without H3 K27M or BRAFV600 mutations. Poly adenosine diphosphate (ADP) ribose polymerases (PARPs) are proteins that help repair DNA mutations. PARP inhibitors, such as veliparib, can keep PARP from working, so tumor cells can't repair themselves, and they may stop growing. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving veliparib, radiation therapy, and temozolomide may work better in treating patients with newly diagnosed malignant glioma without H3 K27M or BRAFV600 mutations compared to radiation therapy and temozolomide alone.
Phase I Study of APX005M in Pediatric CNS Tumors
Glioblastoma MultiformeHigh-grade Astrocytoma NOS6 moreThis phase I trial studies the side effects and best dose of APX005M in treating younger patients with primary malignant central nervous system tumor that is growing, spreading, or getting worse (progressive), or newly diagnosed diffuse intrinsic pontine glioma. APX005M can trigger activation of B cells, monocytes, and dendritic cells and stimulat cytokine release from lymphocytes and monocytes. APX005M can mediate a direct cytotoxic effect on CD40+ tumor cells.
Study Testing The Safety and Efficacy of Adjuvant Temozolomide Plus TTFields (Optune®) Plus Pembrolizumab...
GlioblastomaGlioblastoma1 moreGlioblastoma multiforme (GBM) is the most common and deadliest primary malignant neoplasm of the central nervous system in adults. Despite an aggressive multimodality treatment approach including surgery, radiation therapy and chemotherapy, overall survival remains poor. Pembrolizumab has recently been approved in the United States for the treatment of patients with advanced and metastatic non-small cell lung cancer, recurrent or metastatic head and neck squamous cell carcinoma, locally advanced urothelial carcinoma, classical Hodgkin lymphoma, unresectable or metastatic melanoma This study is being performed to determine whether the triple combination of pembrolizumab when added to TTFields (Optune®) and adjuvant temozolomide increases progression-free survival (PFS) in patients with newly diagnosed GBM as compared to historical control data.
Pembrolizumab in Association With the IMA950/Poly-ICLC for Relapsing Glioblastoma
Glioblastoma MultiformeGlioblastoma3 moreMonocentric randomized phase I/II trial, including 24 patients diagnosed with relapsing glioblastoma (GBM) irrespective of MGMT and IDH gene status. Following diagnosis of relapsing glioblastoma by either brain CT scan or MRI, patients will be randomized in 2 arms: Arm 1: IMA950 mixed with Poly-ICLC administered subcutaneously Arm 2: Pembrolizumab 200mg q3w IV and IMA950 mixed with Poly-ICLC administered subcutaneously The first phase of treatment will last 6 weeks, then surgery will be performed (done if clinically possible ad indicated). In case of available brain tissue, extensive analysis of the tumor immune response will be performed. Assessment of systemic immune response by PBMC immunomonitoring will be systematically done before and after surgery.
Fimepinostat in Treating Brain Tumors in Children and Young Adults
Diffuse Intrinsic Pontine GliomaRecurrent Anaplastic Astrocytoma3 moreThis trial studies how well fimepinostat works in treating patients with newly diagnosed diffuse intrinsic pontine glioma, or medulloblastoma, or high-grade glioma that have come back. Fimepinostat may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
A Trial of Belzutifan (PT2977, MK-6482) Tablets In Patients With Advanced Solid Tumors (MK-6482-001)...
Advanced Solid TumorsSolid Tumor19 moreThe primary objective of this study is to identify the maximum tolerated dose (MTD) of belzutifan Tablets and/or the recommended Phase 2 dose (RP2D) of belzutifan Tablets in patients with advanced solid tumors