search

Active clinical trials for "Gliosarcoma"

Results 1-10 of 234

Efineptakin Alfa and Pembrolizumab for the Treatment of Recurrent Glioblastoma

High Grade Astrocytic TumorRecurrent Glioblastoma2 more

This phase II trial tests the safety and side effects of efineptakin alfa and pembrolizumab in treating patients with glioblastoma that has come back (recurrent). Efineptakin alfa is an immunotherapy drug that works by helping the immune system fight tumor cells. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving efineptakin alfa and pembrolizumab may kill more tumor cells in patients with recurrent glioblastoma.

Recruiting49 enrollment criteria

Testing the Addition of the Chemotherapy Drug Lomustine (Gleostine®) to the Usual Treatment (Temozolomide...

GlioblastomaGliosarcoma

This phase III trial compares the effect of adding lomustine to temozolomide and radiation therapy versus temozolomide and radiation therapy alone in shrinking or stabilizing newly diagnosed MGMT methylated glioblastoma. Chemotherapy drugs, such as lomustine and temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high energy photons to kill tumor cells and shrink tumors. Adding lomustine to usual treatment of temozolomide and radiation therapy may help shrink and stabilize glioblastoma.

Recruiting44 enrollment criteria

hSTAR GBM (Hematopoetic Stem Cell (HPC) Rescue for GBM)

Glioblastoma MultiformeGlioblastoma Multiforme3 more

This phase II trial studies the effect of P140K MGMT hematopoietic stem cells, O6-benzylguanine, temozolomide, and carmustine in treating participants with supratentorial glioblastoma or gliosarcoma who have recently had surgery to remove most or all of the brain tumor (resected). Chemotherapy drugs, such as 6-benzylguanine, temozolomide, and carmustine, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing. Placing P140K MGMT, a gene that has been created in the laboratory into bone marrow making the bone more resistant to chemotherapy, allowing intra-patient dose escalation which kills more tumor cells while allowing bone marrow to survive.

Recruiting27 enrollment criteria

Study of Pembrolizumab and M032 (NSC 733972)

Glioblastoma MultiformeAnaplastic Astrocytoma1 more

This Phase I (Cohort I and Cohort II) and Phase II trial is designed to confirm the safety and tolerability of Pembrolizumab when given in conjunction with M032, an Oncolytic Herpes Simplex Virus (oHSV) that expresses IL-12 and perform the Phase II portion using a Recommended Phase 2 Dose (RP2D) of M032 (provided by the Phase I) when given in conjunction with Pembrolizumab for recurrent malignant glioma (glioblastoma multiforme, anaplastic astrocytoma, or glio-sarcoma).

Recruiting48 enrollment criteria

Peposertib and Radiation Therapy, Followed by Temozolomide for the Treatment of Patients With Newly...

GlioblastomaGliosarcoma

This phase I trial investigates the side effects and best dose of Peposertib, and to see how well it works in combination with radiation therapy in treating patients with newly diagnosed MGMT unmethylated glioblastoma or gliosarcoma. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Peposertib may further stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Chemotherapy drugs, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving Peposertib with radiation therapy may work better than radiation therapy alone in treating patients with glioblastoma or gliosarcoma.

Recruiting49 enrollment criteria

A Phase I Study of Mebendazole for the Treatment of Pediatric Gliomas

Pilomyxoid AstrocytomaPilocytic Astrocytoma11 more

This is a study to determine the safety and efficacy of the drug, mebendazole, when used in combination with standard chemotherapy drugs for the treatment of pediatric brain tumors. Mebendazole is a drug used to treat infections with intestinal parasites and has a long track record of safety in humans. Recently, it was discovered that mebendazole may be effective in treating cancer as well, in particular brain tumors. Studies using both cell cultures and mouse models demonstrated that mebendazole was effective in decreasing the growth of brain tumor cells. This study focuses on the treatment of a category of brain tumors called gliomas. Low-grade gliomas are tumors arising from the glial cells of the central nervous system and are characterized by slower, less aggressive growth than that of high-grade gliomas. Some low-grade gliomas have a more aggressive biology and an increased likelihood of resistance or recurrence. Low-grade gliomas are often able to be treated by observation alone if they receive a total surgical resection. However, tumors which are only partially resected and continue to grow or cause symptoms, or those which recur following total resection require additional treatment, such as chemotherapy. Due to their more aggressive nature, pilomyxoid astrocytomas, even when totally resected, will often be treated with chemotherapy. The current first-line treatment at our institution for these low-grade gliomas involves a three-drug chemotherapy regimen of vincristine, carboplatin, and temozolomide. However, based on our data from our own historical controls, over 50% of patients with pilomyxoid astrocytomas will continue to have disease progression while on this treatment. We believe that mebendazole in combination with vincristine, carboplatin, and temozolomide may provide an additional therapeutic benefit with increased progression-free and overall survival for low-grade glioma patients, particularly for those with pilomyxoid astrocytomas. High grade gliomas are more aggressive tumors with poor prognoses. The standard therapy is radiation therapy. A variety of adjuvant chemotherapeutic combinations have been used, but with disappointing results. For high-grade gliomas this study will add mebendazole to the established combination of bevacizumab and irinotecan to determine this combinations safety and efficacy

Recruiting42 enrollment criteria

Whole Brain Radiation Therapy With Standard Temozolomide Chemo-Radiotherapy and Plerixafor in Treating...

GlioblastomaGlioblastoma With Primitive Neuronal Component3 more

This phase II trial studies how well whole brain radiation therapy works with standard temozolomide chemo-radiotherapy and plerixafor in treating patients with glioblastoma (brain tumor). Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Plerixafor is a drug that may prevent recurrence of glioblastoma after radiation treatment. Giving whole brain radiation therapy with standard temozolomide chemo-radiotherapy and plerixafor may work better in treating patients with glioblastoma.

Recruiting19 enrollment criteria

Engineered NK Cells Containing Deleted TGF-BetaR2 and NR3C1 for the Treatment of Recurrent Glioblastoma...

Recurrent GliosarcomaRecurrent Supratentorial Glioblastoma1 more

This phase I trial is to find out the best dose, possible benefits and/or side effects of engineered natural killer (NK) cells containing deleted TGF-betaR2 and NR3C1 (cord blood [CB]-NK-TGF-betaR2-/NR3C1-) in treating patients with glioblastoma that has come back (recurrent). CB-NK-TGF-betaR2-/NR3C1- cells are genetically changed immune cells that may help to control the disease.

Recruiting39 enrollment criteria

Intracavitary Photodynamic Therapy as an Adjuvant to Resection of Glioblastoma or Gliosarcoma Using...

Glioblastoma Multiforme of BrainGlioma1 more

This study is the first step in testing the hypothesis that adding Photobac® Photodynamic Therapy to surgical removal of a glioblastoma or gliosarcoma will be both safe and effective. Photodynamic Therapy (PDT) combines light and a photosensitizer. PDT has been used to treat a variety of cancers with varying degrees of success. For the past thirty years Photolitec has been working to develop a treatment for glioblastoma or gliosarcoma using light and a photosensitizer. Photolitec's scientists were looking for a photosensitizer that: has no significant systemic toxicity apart from some temporary skin photosensitivity, crosses the blood brain barrier, accumulates to a high level in glioblastoma and minimally in the brain, is activated by the wavelength of light that penetrates most deeply into the brain, minimizes any temporary skin photosensitivity. Preliminary testing indicates the Photolitec team has achieved these five goals. Photolitec is now able to offer a clinical trial based on the results of this work.

Recruiting32 enrollment criteria

Multiple Doses of Neural Stem Cell Virotherapy (NSC-CRAd-S-pk7) for the Treatment of Recurrent High-Grade...

Recurrent Anaplastic AstrocytomaRecurrent Anaplastic Oligoastrocytoma6 more

This phase I trial studies the effect of multiple doses of NSC-CRAd-S-pk7 in treating patients with high-grade gliomas that have come back (recurrent). NSC-CRAd-S-pk7 consists of neural stem cells that carry a virus, which can kill cancer cells. Giving multiple doses of NSC-CRAd-S-pk7 may kill more tumor cells.

Recruiting31 enrollment criteria
12...24

Need Help? Contact our team!


We'll reach out to this number within 24 hrs