search

Active clinical trials for "Granuloma"

Results 21-30 of 88

Expression and Role of the JAK/STAT Pathway in Sarcoidosis Granuloma Cells

SarcoidosisJAK-STAT Pathway Deregulation

Recent studies suggest that the JAK/STAT signaling pathway constitutes a new step in the clinical and therapeutic progress of sarcoidosis. Further investigations are necessary to identify the most suitable patients to receive treatment targeting this pathway, in particular in cases of severe sarcoidosis refractory to the various therapeutic lines.

Recruiting7 enrollment criteria

Recruitment and Apheresis Collection of Peripheral Blood Hematopoietic Stem Cells, Mononuclear Cells...

GranulomaGranulomatous Disease6 more

The research goal of this study is to obtain CD34+ hematopoietic stem cells (HSC) from peripheral blood and/or bone marrow, and Mononuclear Cells (lymphocytes and monocytes), and granulocytes (grans) from peripheral blood that will be used in the laboratory and/or in the clinic to develop new cell therapies for patients with inherited or acquired disorders of immunity or blood cells. Development of novel cellular therapies requires access to HSC, Mononuclear Cells and/or granulocytes as the essential starting materials for the pre-clinical laboratory development of gene therapies and other engineered cell products. HSC or blood cells from healthy adult volunteers serve both as necessary experimental controls and also as surrogates for patient cells for clinical scale-up development. HSC or blood cells from patients serve both as the necessary experimental substrate for novel gene therapy and cellular engineering development for specific disorders and as pre-clinical scale up of cellular therapies. Collection of cells from adult patients collected in the NIH Department of Transfusion Medicine (DTM) under conditions conforming to accepted blood banking clinical practice may also be used directly in or cryopreserved for future use in other NIH protocols that have all required regulatory approvals allowing such use. In summary, the research goal of this protocol is the collection of HSC or blood cells that may be used for both laboratory research and/or for clinical treatment in other approved protocols.

Recruiting34 enrollment criteria

UVA1 Light for Scleroderma and Similar Conditions

KeloidScleroderma3 more

The purpose of this investigation is to evaluate the effectiveness of high-dose UVA1 irradiation in the treatment of fibrosing conditions of the skin, e.g., keloid (a thick scar from growth of fibrous tissue), scleroderma (deposits of fibrous tissue in the skin) and acne keloidalis nuchae (keloids on the back of the neck or hairline) old burn scars, granuloma annulare or other similar skin conditions. This UVA1 dosing schedule has been used successfully in Germany for various skin diseases, such as the above mentioned scleroderma.

Terminated10 enrollment criteria

Gene Therapy for Chronic Granulomatous Disease

Chronic Granulomatous Disease

X-linked Chronic Granulomatous Disease (CGD) is an inherited disorder caused by an abnormal gene that fails to make the protein known as gp91 phox. This protein is part of a group of proteins that work to create hydrogen peroxide in neutrophils. Neutrophils are a type of white blood cell that helps fight infections. As a result, patients who do not make this gp91 phox frequently develop life-threatening infections. In addition, these neutrophils often act abnormally, resulting in the creation of a granuloma, which is an abnormal collection of cells. These granulomas can then become large enough to block organs, such as the bladder and/or intestines, causing significant problems. Patients are usually treated with antibiotics (often needed for extended periods of time) for the infections caused by CGD, and with corticosteroids for the granulomas. However, these drugs do not cure CGD itself, and can have significant side effects. Thus patients with CGD do not have a normal life expectancy. The only available cure to date for CGD is Bone Marrow Transplantation (BMT), where the blood-making cells from a specially matched brother or sister donor (allogeneic) or a similarly matched unrelated donor are given to the patient after the patient has undergone some kind of chemotherapy or radiation in preparation for receiving the cells. If the cells from the donor engraft (or survive in the marrow), the patient can be cured; however, there is a risk that the cells may not engraft or that they may later get rejected from the body. Also, the cells from the donor can react against the patient, causing a serious disorder called "Graft Versus Host Disease" (GVHD). Although there are a number of methods used to try to reduce and/or prevent graft rejection and/or GVHD, these complications can still occur even with the newer methods now being developed. The risks of such complications are lower when a brother or sister is used as the donor; however, not all patients (even those with siblings) will have an ideally matched donor. Hence, transplantation, especially when using an unrelated donor, is not always a perfect cure. Because the gene responsible for making the gp91 phox is known, it is possible to use gene therapy to try to cure this disease. In gene therapy, some of the blood-making cells are taken from the patient using a technique called apheresis. The normal gene is placed into the cells using special viruses called retroviruses. The cells are then able to produce the normal protein. In this trial, the patient will receive a small dose of chemotherapy called busulfan, lower than what is traditionally used in allogeneic BMT, and the newly corrected cells will then be put back into the patient. Even with the best standard of care, a number of patients with CGD will still die from infection. For those patients who have an unresponsive or progressive infection and do not have a possible sibling donor, their only hope is either a Matched Unrelated Donor (MUD) transplant, which has a high risk of causing death itself, or gene therapy. Hence, we would propose using gene therapy in these patients as this has less risk of causing death, but can still possibly offer a cure. Even if the corrected cells do not remain life long to rid the patients entirely of their disease, as long as they persist for even a few months, they would be able to at least clear the current infection for which the patients are being considered for enrollment in this protocol. Further, they would still be eligible to undergo a matched unrelated donor transplant in the event that gene therapy does not confer any benefit.

Terminated26 enrollment criteria

Pioglitazone Therapy for Chronic Granulomatous Disease

Chronic Granulomatous Disease

The purpose of this proposed research is to investigate the efficacy and safety of the therapy with pioglitazone for chronic granulomatous disease (CGD) patients severe infection.

Terminated5 enrollment criteria

Biochemical Response to Interferon-Gamma in Subjects With Specific Gene Mutation in Chronic Granulomatous...

IFN-Gamma TherapyCGD Gene Mutation3 more

Background: - Chronic granulomatous disease (CGD) is an immunodeficiency disease in which white blood cells are unable to kill certain bacteria and fungi. People with CGD are more likely to develop recurrent life-threatening infections. Certain changes or mutations in genes contribute to the severity of CGD, and also appear to affect the success of treatment with interferon-gamma, a substance that is used to improve the immune system s ability to fight infection. Researchers are interested in studying changes in the immune system caused by interferon-gamma treatment of CGD in individuals with different mutations that cause CGD. Objectives: - To compare changes in the immune system caused by interferon-gamma treatment for CGD in individuals with different mutations that cause CGD. Eligibility: - Individuals of any age who have been diagnosed with CGD and have specific types of mutations that cause CGD (to be determined after testing). Design: Participants will be screened with a medical history, physical examination, and blood and urine tests. Participants must weigh more than 11 kilograms (~24 pounds) to participate in the study. Participants will receive injections of interferon-gamma once weekly for 4 weeks, twice weekly for 4 weeks, and then three times weekly for 4 weeks (a total of 24 injections). Blood will be drawn periodically during treatment and for 8 weeks after the treatment, for a total of 21 weeks on the study. Participants will regularly provide information on their symptoms and responses to treatment to the study researchers.

Terminated26 enrollment criteria

Haploidentical Transplant for People With Chronic Granulomatous Disease Using Post Transplant Cyclophosphamide...

Chronic Granulomatous Disease

Background: - Chronic Granulomatous Disease (CGD) causes immune system problems. Treatment is usually a bone marrow transplant from a fully matched donor. Researchers want to try using partially matched donors for patients who do not have a fully matched donor available. The researchers will also use the drug cyclophosphamide to try to improve the outcomes when using a partially matched donor. Objective: - To learn the effectiveness of using cyclophosphamide with a transplant from a partially matched donor in treating CGD. Eligibility: - Recipients: age 2-65 with CGD with an ongoing infection that has not been cured by standard treatment and no fully matched donor available in an appropriate timeframe. Design: Recipients will: be admitted to the hospital 2 weeks before transplant. be screened with blood and urine tests, breathing and heart health tests, X-rays, and/or magnetic resonance imaging. They may have a bone marrow aspiration and biopsy. meet with a social worker and dentist. get chemotherapy, radiation, and other medicines. get an intravenous (IV) catheter in their chest. have the transplant. get more medicines and standard supportive care. have blood drawn frequently. have to stay in the Washington, D.C. area for 3 months post-transplant. be followed closely for the first 6 months, and then less frequently for at least 5 years.

Terminated12 enrollment criteria

Infliximab to Treat Crohn'S-like Inflammatory Bowel Disease in Chronic Granulomatous Disease

Chronic Granulomatous DiseaseCrohn'S-like IBD1 more

This study will determine if the drug infliximab is safe for treating inflammatory bowel disease (IBD) in patients with chronic granulomatous disease (CGD). IBD is an inflammation or irritation of the gut that leads to symptoms such as diarrhea, bloating and stomach cramps. CGD is an inherited disease affecting white blood cells called neutrophils in which patients are susceptible to repeated bacterial and fungal infections. They also have a higher incidence of some autoimmune diseases, such as IBD. Infliximab is approved to treat Crohn's disease, an IBD similar to that seen in patients with CGD. Patients 10 years of age and older with CGD and IBD may be eligible for this study. Candidates are screened with a medical history, physical examination, blood and urine tests, electrocardiogram (EKG), tuberculosis skin test (PPD skin testing), and stool test for the presence of infections. Additional tests may be done, including colonoscopy (procedure using a flexible tube through the rectum to examine the lining of the gut) and imaging studies such as an x-ray, chest CT scan (test using a special x-ray machine), MRI (test using a magnetic field and radio waves), and barium studies (study using a drinkable solution of barium to help enhance the x-ray pictures of the gut). Participants are divided into patients with IBD symptoms (Group 1) and patients without IBD symptoms (Group 2) for the following procedures: Group 1 Patients are evaluated every 6 months with a medical history and physical examination for signs and symptoms of IBD. Patients who are taking moderate to high doses of steroid medications have their medication slowly lowered (tapered) and are evaluated every 3 months for a total of 2 years. Patients in this group who start to develop IBD symptoms are moved to Group 2 for treatment with infliximab (see below). Group 2 Patients in Group 2 receive infliximab infusions at 2-week intervals for three doses. The drug is given over a 2-hour period through a catheter placed in a vein. Patients are evaluated with a medical history, physical exam, and blood tests the day of each dose. One week after the last dose, they have another evaluation, including a colonoscopy. Patients who respond well to infliximab may continue to receive the drug every 2 months for a total of 1 year, with evaluations at every dosing visit. At the end of the first year of receiving infliximab, all patients have follow-up evaluations every 6 months for a total of 2 years. Group 3 Subjects who volunteer to undergo colonoscopy and research biopsies that serve as controls for evaluation of the patient gut samples.

Terminated42 enrollment criteria

Photodynamic Therapy Using HPPH in Treating Patients Undergoing Surgery for Primary or Recurrent...

Recurrent Adenoid Cystic Carcinoma of the Oral CavityRecurrent Basal Cell Carcinoma of the Lip53 more

This phase I trial studies the side effects and best dose of photodynamic therapy using HPPH in treating patients who are undergoing surgery for primary or recurrent head and neck cancer. Photodynamic therapy (PDT) uses a drug, such as HPPH, that becomes active when it is exposed to a certain kind of light. When the drug is active, tumor cells are killed. Giving photodynamic therapy after surgery may kill any tumor cells that remain after surgery.

Completed17 enrollment criteria

Bevacizumab, Fluorouracil, and Hydroxyurea Plus Radiation Therapy in Treating Patients With Advanced...

Metastatic Squamous Neck Cancer With Occult Primary Squamous Cell CarcinomaRecurrent Adenoid Cystic Carcinoma of the Oral Cavity52 more

Monoclonal antibodies, such as bevacizumab, can block cancer growth in different ways. Some block the ability of cancer cells to grow and spread. Others find cancer cells and help kill them or deliver cancer-killing substances to them. Drugs used in chemotherapy work in different ways to stop tumor cells from dividing so they stop growing or die. Radiation therapy uses high-energy x-rays to damage tumor cells. Combining monoclonal antibody therapy with chemotherapy and radiation therapy may be an effective treatment for head and neck cancer. This phase I trial is to see if combining bevacizumab, fluorouracil, and hydroxyurea with radiation therapy works in treating patients who have advanced head and neck cancer

Completed50 enrollment criteria
1234...9

Need Help? Contact our team!


We'll reach out to this number within 24 hrs