Low Dose IL-2, Hematopoietic Stem Cell Transplantation, IL2 for GVHD
Acute Lymphoblastic LeukemiaALL8 morePatients are being asked to participate in this study because treatment for their disease requires a stem cell transplant (SCT). Stem cells are the source of normal blood cells found in the bone marrow and lead to recovery of blood counts after bone marrow transplantation. With stem cell transplants, regardless of whether the donor is a full match to the patient or not, there is a risk of developing graft-versus-host disease (GVHD). GVHD is a serious and sometimes fatal side effect of SCT. GVHD occurs when the new donor stem cells (graft) recognizes that the body tissues of the patient (host) are different from those of the donor. When this happens, cells in the graft may attack the host organs. How much this happens and how severe the GVHD is depends on many things, including how different the donors cells are, the strength of the drugs given in preparation for the transplant, the quality of transplanted cells and the age of the person receiving the transplant. Typically, acute GVHD occurs in the first 100 days following transplant, while chronic GVHD occurs after day 100. Acute GVHD most often involves the skin, where it can cause anywhere from a mild rash to complete removal of skin; liver, where it can anywhere from a rise in liver function tests to liver failure; and the gut, where it can cause anywhere from mild diarrhea to profuse, life-threatening diarrhea. Most patients who develop GVHD experience a mild to moderate form, but some patients develop the severe, life-threatening form. Previous studies have shown that patients who receive SCT's can have a lower number of special T cells in their blood, called regulatory T cells, than people who have not received stem cell transplants. When regulatory T cells are low, there appears to be an increased rate of severe, acute GVHD. A drug known as IL-2 (Proleukin) has been shown to increase the number of regulatory T cells in patients following stem cell transplant, and in this study investigators plan to give low dose IL-2 after transplant. This study is called a phase II study because its major purpose is to find out whether using a low-dose of IL-2 will be effective in preventing acute GVHD. Other important purposes are to find out if this treatment helps the patient's immune system recover regulatory T cells faster after the transplant. This study will assess the safety and toxicity of low-dose IL-2 given to patients after transplantation and determine whether this drug is helpful in preventing GVHD.
Mantle Irradiation for Hodgkin's Disease
Hodgkin's DiseaseThe purpose of this study it to evaluate the effectiveness of radiation therapy limited to above the diaphragm in patients with pathological stage IA-IIA Hodgkin's disease.
Haploidentical Donor Bone Marrow Transplant in Treating Patients With High-Risk Hematologic Cancer...
Accelerated Phase Chronic Myelogenous LeukemiaAdult Acute Lymphoblastic Leukemia in Remission95 moreThis phase II trial studies how well giving fludarabine phosphate, cyclophosphamide, tacrolimus, mycophenolate mofetil and total-body irradiation together with a donor bone marrow transplant works in treating patients with high-risk hematologic cancer. Giving low doses of chemotherapy, such as fludarabine phosphate and cyclophosphamide, and total-body irradiation before a donor bone marrow transplant helps stop the growth of cancer cells by stopping them from dividing or killing them. Giving cyclophosphamide after transplant may also stop the patient's immune system from rejecting the donor's bone marrow stem cells. The donated stem cells may replace the patient's immune system cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving tacrolimus and mycophenolate mofetil after the transplant may stop this from happening
Epstein Barr Virus (EBV) Specific Cytotoxic T-Cells, Relapsed Lymphoma, ANGEL
Epstein-Barr Virus-Related Hodgkin LymphomaEpstein-Barr Virus-Related Non-Hodgkin Lymphoma1 morePatients have a type of lymph gland cancer called Hodgkin or non-Hodgkin Lymphoma which has come back or not gone away after treatment, including the best treatment known for relapsed Lymphoma. Patients are being asked to volunteer to be in a research study using Epstein Barr virus specific cytotoxic T lymphocytes, a new experimental therapy. This therapy has never been used in patients with Hodgkin disease or this type of non-Hodgkin Lymphoma but it has been used successfully in children with other types of blood cancer caused by EBV after bone marrow transplantation. Some patients with Hodgkin or non-Hodgkin Lymphoma show evidence of infection with the virus that causes infectious mononucleosis Epstein Barr virus before or at the time of their diagnosis of the Lymphoma. EBV is often found in the cancer cells suggesting that it may play a role in causing Lymphoma. The cancer cells infected by EBV are very clever because they are able to hide from the body's immune system and escape destruction. Investigators want to see if it's possible to grow special white blood cells, called T cells, that have been trained to kill EBV infected cells. Purpose The purpose of this study is to find the largest safe dose of EBV specific cytotoxic T cells, to learn what the side effects are and to see whether this therapy might help patients with Hodgkin disease and non-Hodgkin Lymphoma.
Tipifarnib in Treating Patients With Relapsed or Refractory Lymphoma
Anaplastic Large Cell LymphomaExtranodal Marginal Zone Lymphoma of Mucosa-Associated Lymphoid Tissue11 moreThis phase II trial studies how well tipifarnib works in treating patients with relapsed or refractory non-Hodgkin's lymphoma. Tipifarnib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Tipifarnib may be an effective treatment for non-Hodgkin's lymphoma.
LMP-specific T-cells for Patients With Relapsed EBV-positive Lymphoma
Hodgkin DiseaseNon Hodgkin Lymphoma2 moreThis protocol is broken up into 2 portions to determine the maximum tolerated dose for treating patients with a type of lymph gland disease. The 1st portion, called ALASCER are for people with a type of lymph gland cancer called Hodgkin or non-Hodgkin Lymphoma or Lymphoepithelioma which has returned or may return or has not gone away after treatment, including the best treatment we know for Lymphoma. While the 2nd portion (ALCI) also includes Lymphoepithelioma, severe chronic active EBV (SCAEBC), and leiomyosarcoma. Some patients with Lymphoma show evidence of infection with the virus that causes infectious mononucleosis Epstein Barr virus (EBV) before or at the time of their diagnosis. EBV is found in the cancer cells of up to half the patients with Hodgkin's and non-Hodgkin Lymphoma, suggesting that it may play a role in causing Lymphoma. The cancer cells (in lymphoma) and some B cells (in SCAEBV) infected by EBV are able to hide from the body's immune system and escape destruction. Investigators want to see if special white blood cells, called T cells, that have been trained to kill EBV infected cells can survive in your blood and affect the tumor. The investigators have used this sort of therapy to treat a different type of cancer that occurs after bone marrow or solid organ transplant called post transplant lymphoma. In this type of cancer the tumor cells have 9 proteins made by EBV on their surface. The investigators grew T cells in the laboratory that recognized all 9 proteins and were able to successfully prevent and treat post transplant lymphoma. However in Hodgkin disease and non-Hodgkin Lymphoma and SCAEBV, the tumor cells and B cells only express 2 EBV proteins. In a previous study we made T cells that recognized all 9 proteins and gave them to patients with Hodgkin disease. Some patients had a partial response to this therapy but no patients had a complete response. Investigators think one reason may be that many of the T cells reacted with proteins that were not on the tumor cells. In this present study we are trying to find out if we can improve this treatment by growing T cells that only recognize one of the proteins expressed on infected EBV Lymphoma cells called LMP-2a, and B cells called LMP1 and LMP2. These special T cells are called LMP specific cytotoxic T-lymphocytes (CTLs). The purpose of the study is to find the largest safe dose of LMP specific cytotoxic T cells, to learn what the side effects are and to see whether this therapy might help patients with Hodgkin disease, non-Hodgkin Lymphoma, Lymphoepithelioma, SCAEBV or leiomyosarcoma.
17-AAG in Treating Patients With Relapsed or Refractory Anaplastic Large Cell Lymphoma, Mantle Cell...
Anaplastic Large Cell LymphomaRecurrent Adult Hodgkin Lymphoma1 moreThis phase II trial is studying how well 17-AAG works in treating patients with relapsed or refractory anaplastic large cell lymphoma, mantle cell lymphoma, or Hodgkin's lymphoma. Drugs used in chemotherapy, such as 17-AAG, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing.
Alemtuzumab, Fludarabine Phosphate, and Total-Body Irradiation Followed by Cyclosporine and Mycophenolate...
Acute Undifferentiated LeukemiaAdult Acute Lymphoblastic Leukemia in Remission64 moreThis phase II trial is studying the side effects and best dose of alemtuzumab when given together with fludarabine phosphate and total-body irradiation followed by cyclosporine and mycophenolate mofetil in treating patients who are undergoing a donor stem cell transplant for hematologic cancer. Giving low doses of chemotherapy, such as fludarabine phosphate, a monoclonal antibody, such as alemtuzumab, and radiation therapy before a donor stem cell transplant helps stop the growth of cancer cells. Giving chemotherapy or radiation therapy before or after transplant also stops the patient's immune system from rejecting the donor's bone marrow stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving cyclosporine and mycophenolate mofetil after the transplant may stop this from happening.
Allogeneic Blood Stem Cell Transplantation
Hodgkin's DiseaseTo determine the feasibility and toxicity of employing allogeneic peripheral blood stem cell transplantation after intensive but non-myeloablative chemotherapy in patients with relapsed Hodgkin's disease (HD). To determine the engraftment kinetics and degree of chimerism that can be achieved with this strategy. To assess the antitumor activity of this approach in high-risk HD patients and the possible presence of a graft-vs-HD effect.
SGN-30 and Combination Chemotherapy in Treating Patients With Relapsed or Refractory Hodgkin Lymphoma...
Adult Lymphocyte Depletion Hodgkin LymphomaAdult Lymphocyte Predominant Hodgkin Lymphoma3 moreThis randomized phase II trial studies the side effects and how well giving monoclonal antibody SGN-30 together with combination chemotherapy works in treating patients with Hodgkin lymphoma that has returned after a period of improvement or did not respond to previous treatment. Monoclonal antibodies, such as SGN-30, may interfere with the ability of cancer cells to grow and spread. Drugs used in chemotherapy, such as gemcitabine hydrochloride, vinorelbine tartrate, and pegylated liposomal doxorubicin hydrochloride, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving monoclonal antibody SGN-30 together with combination chemotherapy may kill more cancer cells and shrink tumors.