BIPAP vs CPAP Effects on Type 2 Respiratory Failure Patients
Type 2 Respiratory FailureEffectiveness of BIPAP is evaluated in Type-2 failure but evaluation of effectiveness of CPAP in Type-2 respiratory failure in post cardiac surgery patients was not done. So the objective of this study is to determine the acute effects of BIPAP vs. CPAP with conventional physiotherapy on Hemodynamics and Respiratory parameters in management of Type 2 Respiratory failure in post cardiac surgery patients.
HFNC During Bronchoscopy for Bronchoalveolar Lavage
Acute Respiratory FailureBronchoscopy1 moreThe execution of diagnostic-therapeutic investigations by bronchial endoscopy can expose the patient to acute respiratory failure (ARF). In particular, the risk of hypoxemia is greater during broncho-alveolar lavage (BAL). For this reason, oxygen therapy is administered at low or high flows during the course of bronchoscopic procedures, in order to avoid hypoxemia. Few clinical studies have demonstrated the efficacy and safety of high flow oxygen through nasal cannula (HFNC) during BAL procedures, and no study has evaluated, during bronchial endoscopy, the effects of HFNC on diaphragmatic effort (assessed with ultrasound) and aeration and ventilation of the different lung regions (assessed with electrical impedance tomography). Therefore, investigators conceived the present randomized controlled study to evaluate possible differences existing during bronchoscopy between oxygen therapy administered with HFNC and conventional (low-flow) oxygen therapy, delivered through nasal cannula.
"TRAcheostomy With Single Use Bronchoscopes vs. Conventional Bronchoscopes"
Respiratory InsufficiencyOptical guidance for percutaneous tracheostomy in intensive care is usually performed by conventional multi use bronchoscopy. Recently a single use bronchoscope has been introduced that allows for endotracheal visualization. For feasibility evaluation, 23 patients in intensive care receive percutaneous tracheostomy with optical guidance by the Ambu® aScopeTM 4 bronchoscope and 23 patients in intensive care receive percutaneous tracheostomy with a conventional bronchoscope (Olympus BF Type P60). The primary end point is the visualization through the single use bronchoscope of endotracheal landmark structures for tracheostomy and visualization of the needle insertion (according to score, see detailed description).
Acetaminophen and Ascorbate in Sepsis: Targeted Therapy to Enhance Recovery
Acute Respiratory Distress SyndromeCritical Illness2 moreProspective multi-center phase 2b randomized placebo-controlled double-blinded interventional platform trial of two different pharmacologic therapies (intravenous Vitamin C or intravenous Acetaminophen) for patients with sepsis-induced hypotension or respiratory failure.
Impact of Humidification on Sleep Quality During Home Non Invasive Ventilation
Chronic Respiratory Failure With HypercapniaProtocol Summary: Question Does the adjunction of a humidification system to non-invasive ventilation circuit improve sleep quality and comfort of chronic ventilated respiratory insufficient patients? Does it change the efficacy of long-term non invasive ventilation therapy and patient-ventilator interactions? Aims Main aim: The primary endpoint of this study is to objectively evaluate the consequences of a humidification system's adjunction on quality of sleep, 2 months after treatment's beginning. Second aims: The secondary endpoints are to evaluate the consequences of a humidification system's adjunction on non invasive ventilation's efficacy / patient-ventilator asynchronies / patients' comfort / treatment adherence. Before the clinical trial, the investigators conducted a bench study using a mechanical lung in order to evaluate the ventilator's behavior with and without a humidification system. The clinical trial will include patients with chronic respiratory failure with an indication of long-term non invasive ventilation therapy. Patients will be included in the Pulmonology, Thoracic Oncology and Respiratory intensive care unit of Rouen University Hospital. It will be a prospective monocentric study, including consecutively all eligible patients. Informed consent will be obtained from all of them. At baseline, patients will be hospitalized for two consecutive nights for non invasive ventilation's set up. During the first night, a polysomnography will be performed without non invasive ventilation. Then, patients will be treated by non invasive ventilation with a bi-level self-regulated pressure mode and an open circuit. Patients will be randomized in two groups: without a humidification system and with a humidification system. Partitioning by the physiopathological pattern (obstructive versus obesity hypoventilation syndrome vs. neuromuscular disease) will be done. During each night, arterial blood gases will be measured at bedtime and awakening. Patients will be monitored by: polysomnography (only during the first night) transcutaneous capnography accessory inspiratory muscles surface electromyography pneumotachograph on non invasive ventilation's circuit pressions measured at the mask. Follow-up will take place at two months after non invasive ventilation's beginning with or without humidification. Patients will be hospitalized for one night only. Blood gases at bedtime and at awakening will be measured. A polysomnography with non invasive ventilation will be performed. Observance will be evaluated.
Assessing Lung Inhomogeneity During Ventilation for Acute Hypoxemic Respiratory Failure
Acute Respiratory Distress SyndromeMechanical Ventilation Pressure High1 moreMechanical ventilation can cause damage by overstretching the lungs, especially when the lungs are collapsed or edematous. Raising ventilator pressures can reduce lung collapse and this can prevent overstretching from mechanical ventilation. It remains uncertain how much pressure (PEEP - positive end-expiratory pressure) should be used on the ventilator and how to identify patients who will benefit from higher ventilator pressures vs. lower ventilator pressures. The investigators are using a unique new imaging technology, electrical impedance tomography (EIT), to study this problem and to determine the safest and most effective ventilator pressure level. The results of this study will inform future trials of higher vs. lower PEEP strategies in mechanically ventilated patients.
Prone Positioning During High Flow Oxygen Therapy in Acute Hypoxemic Respiratory Failure
Respiratory Failure With HypoxiaRespiratory Failure Without HypercapniaBackground High-flow nasal cannula (NHF) are a promising tool for administering oxygen to critically ill patients with high respiratory demand. Prone positioning (PP) is a simple and cost-effective strategy that since 1980s has been used in mechanically ventilated patients with acute respiratory failure to treat oxygenation impairment. A large randomized study detected a relevant survival benefit by prone positioning in patients with moderate to severe acute respiratory distress syndrome (ARDS) undergoing invasive mechanical ventilation and managed with the ARDS network PEEP-FiO2 table strategy. Theoretically, PP may benefit spontaneous breathing patients too, but data concerning its application in such context are limited to small case series and a retrospective study. The investigators designed a pilot feasibility study to assess the safety and efficacy of prone positioning in acute hypoxemic respiratory failure patients noninvasively treated with NHF. Methods Patients: 15 adult hypoxemic (PaO2/FiO2<200 mmHg with respiratory rate greater than 25 breaths per minute) non-hypercapnic patients with acute respiratory failure. PaO2/FiO2 will be assessed while the patients is receiving 50 L/min of 50% oxygen via a standard face mask for a 15-minute monitoring period at study entry. Protocol Eligible patients will undergo NHF for 1 hour in the supine semi-recumbent position (baseline, BL). Afterwards, each enrolled patient will be placed in the prone position for 2 hours. After a 2-hour PP period, the patient will be rotated and will undergo 1 hour of NHF in the semi recumbent supine position (Supine step). Measurements Patient's demographics will be collected at study entry. At the end of the monitoring period, and then on a hourly basis the following data will be collected: Respiratory rate, SpO2, pH, PaCO2, PaO2, SaO2, PaO2/FiO2; Heart Rate, arterial blood pressure; Dyspnea, as defined by the VAS dyspnoea scale; Discomfort, as defined by a visual analogic scale (VAS) adapted to rate the procedural pain of ICU patients; End expiratory lung impedance (EELI), tidal volume distribution, global and regional lung dynamic strain (Change in lung impedence due to tidal volume/ELLI). Work of breathing, assessed by pressure-time product (PTP) of the esophageal pressure and inspiratory swings in this signal. Occurrence of pendelluft phenomenon The number of adverse events will be also recorded for each study step.
Fibroblast Growth Factor 23 in Chronic Respiratory Failure
Chronic Respiratory FailureFibroblast growth factor 23 (FGF23) is a key hormone of the mineral metabolism produced in bone and acting on the kidney to lower phosphatemia. FGF23 is subject to inactivating proteolytic cleavage which results in the presence of C-terminal and N-terminal fragments heretofore described as inactive. We recently showed an increase in FGF23Ct in sickle cell patients, its association with left ventricular mass as well as a direct, pro-hypertrophic effect of FGF23Ct on rat cardiomyocytes. Data from the literature suggest that hypoxia (linked or not to anemia) is responsible for an increase in the production and cleavage of FGF23, either via the hypoxia inducible factor (HIF1α) or via the increase in erythropoietin (EPO). We hypothesize that the FGF23Ct / FGF23i ratio is increased in response to chronic tissue hypoxia, in the absence of anemia, in patients with chronic respiratory failure (CRF) either due to a direct response to hypoxia via the stimulation of HIF1α, or indirectly via the increase in the circulating concentration of EPO. This elevation, if proven, could contribute to the increased risk of heart disease seen in some populations of CRF. We propose to test this hypothesis by assaying FGF23Ct and FGF23i in a cohort of adult CRF patients before and after initiation of oxygen therapy. The object of the present study is to study the FGF23Ct / FGF23i ratio in incident patients presenting with a non treated CRF as well as the modifications of this ratio under oxygen therapy and to study the correlations between FGF23 Ct and FGF23 and i) oxygen saturation and PaO2 ii) echocardiographic parameters and iii) EPO concentrations. Three visits are planned: Baseline (before initiation of oxygen therapy), and two visits after initiation of oxygen therapy, at 3 months (M3) and at 12 months (M12). For each visit, anthropometric and clinical data, treatment and biological results will be collected. FGF23 intact , FGF23 C-terminal and Erythropoietin will be measured. A cardiac ultrasound will be performed at baseline and at M12.
Feasibility of the Comfort Measures Only Time Out (CMOT)
End of LifeRespiratory Failure3 moreNearly 25% of Americans die in intensive care units (ICUs). Most deaths in ICUs are expected and involve the removal of ventilator support, or palliative withdrawal of mechanical ventilation (WMV). Prior work by the Principal Investigator (PI) found that patient suffering can be common; with 30-59% of patients going through this process experiencing distress. Thus, experts and national organizations have called for evidence to inform guidelines for WMV. This research study will 1) develop and refine a Comfort Measures Only Time out (CMOT) intervention consisting of a structured time out with check-list protocol for the ICU team (nurse, physician, respiratory therapist) to improve the process of WMV. and 2) Pilot test the CMOT intervention in 4 ICUs (2 medical/2 surgical) among 40 WMV patients.
DirEct Versus VIdeo LaryngosCopE Trial
Acute Respiratory FailureClinicians perform rapid sequence induction, laryngoscopy, and tracheal intubation for more than 5 million critically ill adults as a part of clinical care each year in the United States. Failure to intubate the trachea on the first attempt occurs in more than 10% of all tracheal intubation procedures performed in the emergency department (ED) and intensive care unit (ICU). Improving clinicians rate of intubation on the first attempt could reduce the risk of serious procedural complications. In current clinical practice, two classes of laryngoscopes are commonly used to help clinicians view the larynx while intubating the trachea: a video laryngoscope (equipped with a camera and a video screen) and a direct laryngoscope (not equipped with a camera or video screen). For nearly all laryngoscopy and intubation procedures performed in current clinical practice, clinicians use either a video or a direct laryngoscope. Prior research has shown that use of a video laryngoscope improves the operator's view of the larynx compared to a direct laryngoscope. Whether use of a video laryngoscope increases the likelihood of successful intubation on the first attempt remains uncertain. A better understanding of the comparative effectiveness of these two common, standard-of-care approaches to laryngoscopy and intubation could improve the care clinicians deliver and patient outcomes.