search

Active clinical trials for "Brain Injuries"

Results 1331-1340 of 2049

Prevalence of Trephined Syndrome After Decompressive Craniectomy

Trephined SyndromeSinking Skin Flap Syndrome5 more

Decompressive craniectomy is frequently used to treat increased intracranial pressure or an intracranial mass effect. Trephined Syndrome describes a neurological deterioration, which is attributed to a large craniectomy. The symptomatology is varied but includes headache, aggravation of a hemisyndrome or cognitive disorders, often has an orthostatic component and improves or disappears with cranioplasty. The incidence of Trephined Syndrome has been reported between 7% and 26%. However, it might be underestimated if the course of cognitive functions before and after cranioplasty were insufficiently documented.

Terminated3 enrollment criteria

Rehabilitation of Visual Function After Brain Injury

StrokeIschemic3 more

In Denmark, about 120,000 people suffer from brain damage, of whom approx. 75,000 with brain damage after stroke. Serious and often lasting vision impairments affect 20% to 35% of people after stroke. Vision is the most important sense in humans, and even smaller permanent injuries can drastically reduce quality of life. Vision impairments after brain damage inhibits rehabilitation and enhances other invalidating effects. Reduced vision results in impaired balance, increased risk of serious falls, increased support needs, reduced quality of life, and impaired ability to perform activities of daily living. Restoration of visual field impairments occur only to a small extent during the first month after brain damage, and therefore the time window for spontaneous improvements is very limited. Hence, brain-impaired persons with visual impairment will most likely experience chronically impaired vision already 4 weeks after brain injury and the need for visual compensatory rehabilitation is substantial. Neuro Vision Technology (NVT) is an supervised training course where people with visual impairments are trained in compensatory techniques using special equipment. Through the NVT process, the individual's vision problems are carefully investigated and personal data is used to organize individual training sessions that practice the individual in coping with situations that cause problems in everyday life. The purpose of this study is to investigate whether rehabilitation with NVT can cause significant and lasting improvement in functional capacity in persons with chronic visual impairments after brain injury. Improving eyesight is expected to increase both physical and mental functioning, thus improving the quality of life. Participants included in the project will be investigated in terms of both visual and mental functions, including quality of life, cognition and depression. Such an investigation has not been performed previously and can have a significant impact on vision rehabilitation both nationally and internationally.

Unknown status13 enrollment criteria

Effects of an Interdisciplinary Fitness and Social Engagement Intervention

TBI (Traumatic Brain Injury)

This study will evaluate feasibility and preliminary effectiveness of a 10-week interdisciplinary and multimodal intervention that utilizes patient education, group discussion, and supervised exercise for Veterans with a history of traumatic brain injury (TBI). Primary outcomes include physical activity (PA), sleep quality, and community integration.

Unknown status8 enrollment criteria

Partial Blocks of Rectus Femoris and Soleus With Botulinum Toxin Type A (Xeomin®) to Improve Gait...

Hemiparesis After StrokeTraumatic Brain Injury

The most common motor deficiency after stroke or traumatic brain injury is hemiparesis. Most hemiparetic patients recover walking, but rarely with a speed permitting easy ambulation outdoors with family or friends. One of the mechanisms of gait impairment in hemiparesis is insufficient active hip flexion during swing phase, which leads to insufficient ground clearing at swing phase, with associated gait slowness and risks of fall. The main hypothesis behind the present study is that insufficient hip flexion during hemiparetic gait is partly due to overactivity of rectus femoris. Focal treatment of lower limb muscle overactivity using botulinum toxin has not been demonstrated to increase walking speed in hemiparesis as yet. However, most studies have focused distally, on improving foot dorsiflexion only. The purpose of this study is to compare the effects of botulinum toxin injection and placebo in rectus femoris (RF) + plantar flexors versus plantar flexors only.

Unknown status15 enrollment criteria

Does Short-Term Anti-Seizure Prophylaxis After Traumatic Brain Injury Decrease Seizure Rates?

SeizuresTraumatic Brain Injury

The primary objective of this study is to prospectively assess in randomized fashion whether short term anti-seizure prophylaxis in traumatic brain injured patients decreases the incidence of seizures in the early post-injury period. A secondary objective is to evaluate whether there are differences in mortality, hospital length of stay, functional outcome at hospital discharge, hospital cost, discharge status (home, rehabilitation facility, etc.) for patients who receive and do not receive anti-seizure prophylaxis.

Unknown status7 enrollment criteria

Treatment for Patients With Chronic Post-Concussion Symptoms

Mild Traumatic Brain InjuryConcussion Post Syndrome

The current project will examine the effect of a brief psychological intervention on post-concussion symptoms, neurocognitive function, cerebral blood flow (CBF), and psychophysiological and salivary cortisol markers of autonomic nervous system (ANS) in a sample of 20 participants between 13-25 years of age who experience long-term post-concussive (PC) symptoms 2-9 months post-injury as well as 20 age- and sex-matched controls (non-injured) participants to provide normative data on all the above measures except for concussive symptoms.

Unknown status10 enrollment criteria

D-aspartate and Therapeutic Exercise

Brain Injuries

An important mechanism responsible for clinical recovery after neurological damage of different types is synaptic plasticity. Nervous tissue can enhance or de-energize inter-neuronal transmission at synaptic level in a lasting way. By increasing the efficiency of synaptic transmission, through long-term potentiation (LTP), it is possible to compensate for the loss of synaptic pulses on survived neurons due to brain damage and to restore their function. At synaptic level, LTP is mainly regulated by NMDA receptors. In animal models induction of plasticity in surviving neurons through the stimulation of NMDA receptors has been shown to limit the clinical manifestations of neuronal damage. Endogenous NMDA is synthesized by methylation of D-aspartate (Asp) by D-aspartatoartate methyltransferase . Moreover, Asp acts as a neurotransmitter capable of activating the NMDA receptor, since its biosynthesis, degradation, absorption and release occurs in the pre-synaptic neuron, and its release determines a response in Post-synaptic neurons. The expression of Asp in the SNC is very abundant during the embryonic period and in early years, whereas it is significantly reduced in adulthood. Consistent with Asp ability of activating the NMDA receptor, recent studies have shown that oral administration of Asp increases LTP induction in mice. Preliminary studies by our group also showed an increase in LTP amplitude in subjects suffering from progressive forms of Multiple Sclerosis after 2 weeks of daily per os intake of 2660mg Asp. It is also well known that the therapeutic exercise that characterizes a rehabilitative treatment is able to induce various benefits to the physical-functional and the cognitive-emotional spheres. In this regard, it has been extensively demonstrated how repeatedly performing a motor task can increase cortical excitability through the induction of LTP mechanisms. Hypothesis Pharmacologically promoting the induction of cortical LTP by the intake of Asp in subjects with various types of brain damage (eg Multiple Sclerosis, Parkinson's Disease, Dementia) may favor the therapeutic effects of rehabilitative treatment. Specific Objectives Evaluate the effects of Asp in improving the outcome of rehabilitative treatment resulting from brain damage of different origin.

Unknown status13 enrollment criteria

Implementation of Neuro Lung Protective Ventilation

Acute Brain InjuryTraumatic Brain Injury4 more

Patients who experience lung injury are often placed on a ventilator to help them heal; however, if the ventilator volume settings are too high, it can cause additional lung injury. It is proven that using lower ventilator volume settings improves outcomes. In patients with acute brain injury, it is proven that maintaining a normal partial pressure of carbon dioxide in the arterial blood improves outcomes. Mechanical ventilator settings with higher volumes and higher breathing rates are sometimes required to maintain a normal partial pressure of carbon dioxide. These 2 goals of mechanical ventilation, using lower volumes to prevent additional lung injury but maintaining a normal partial pressure of carbon dioxide, are both important for patients with acute brain injury. The investigators have designed a computerized ventilator protocol in iCentra that matches the current standard of care for mechanical ventilation of patients with acute brain injury by targeting a normal partial pressure of carbon dioxide with the lowest ventilator volume required. This is a quality improvement study with the purpose of observing and measuring the effects of implementation of a standard of care mechanical ventilation protocol for patients with acute brain injury in the iCentra electronic medical record system at Intermountain Medical Center. We hypothesize that implementation of a standardized neuro lung protective ventilation protocol will be feasible, will achieve a target normal partial pressure of carbon dioxide, will decrease tidal volumes toward the target 6 mL/kg predicted body weight, and will improve outcomes.

Unknown status5 enrollment criteria

A Trial Evaluating Effects of COMT Inhibition in Patients With Acquired Brain Injury

Brain InjuriesBrain Injuries3 more

This is a follow-up study for an ongoing open label trial conducted by the Sheppard Pratt-Lieber Research Institute utilizing the catechol-O-methyl-transferase (COMT) inhibitor Tolcapone to evaluate its effects on cognition and neuropsychiatric symptoms in patients with brain injuries (BI). In this study, investigators will conduct a double-blind, placebo-controlled clinical trial utilizing a crossover design to study the effects of two weeks of Tolcapone 200mg administered three times a day (total of 600mg/day) on cognitive performance. Physical, emotional, cognitive and social functioning will also be evaluated through participant and proxy report. The investigators are planning to randomize a total of 12 patients with a history of acquired brain injury (BI).

Unknown status19 enrollment criteria

Early Mobilisation After Severe Traumatic Brain Injury

Brain Injuries

Increasing focus on the negative effects of bed rest have become more apparent in the intensive care unit within the last decade. A few studies have found an association between early rehabilitation starting at the intensive care unit and outcome after discharge from rehabilitation. The early mobilization presents with challenges regarding haemodynamic stability. The aim of this trial is to assess the feasibility before conducting a larger randomised trial that will investigate benefits and harms of an intensive physical rehabilitation intervention focusing on mobilisation to the upright position, starting as early as clinically feasible in the intensive care unit

Unknown status7 enrollment criteria
1...133134135...205

Need Help? Contact our team!


We'll reach out to this number within 24 hrs