search

Active clinical trials for "Brain Injuries"

Results 961-970 of 2049

Rehabilitation Treatment of Time Deficits in Brain-damaged Patients

Brain Damage

The efficacy of an innovative rehabilitation treatment for deficit in time processing is tested in right brain damaged patients. Patients with a focal lesion following a stroke and without general cognitive impairment will be submitted to computerized tests assessing the ability to estimate time duration (intervals around 7500 ms) and to mental travel in time. Moreover, the impact of the deficit in time processing in everyday life will be evaluated by using ad hoc questionnaires. Patients will perform tasks before and after two weeks of a new rehabilitation treatment, combining a training for one week with prismatic googles inducing prismatic adaptation (PA) plus Virtual Reality (VR) and a training for one week with neutral googles inducing no-adaptation (NA) plus Virtual Reality. Participants will be randomized into two groups. Each group will be submitted to both treatments in a different order, accordingly with a crossover design. A greater amelioration in time processing after PA+VR than NA+VR training should be found. Moreover, an improvement in everyday life activities is expected accordingly with the amelioration in time processing.

Completed5 enrollment criteria

Aquatic Sequential Preparatory Approach and Severe Traumatic Brain Injury

Traumatic Brain InjurySevere Traumatic Brain Injury

Traumatic brain injury (TBI) is an acquired insult to the brain from an external mechanical force. It is considered a major cause of mortality and of long-term disabilities in young adults, especially considering high-income countries. The TBI can cause a wide range of temporary and/or permanent brain's dysfunctions that can involve physical, cognitive, behavioural and emotional functioning limiting everyday life and social activities and leading to a lowers quality of life. a sequential preparatory approach (SPA), performed in aquatic environment, based on increasing difficulty and following a specific sequence of preparatory exercises (from the simplest to the most complex) could be an effective complementary training during post-acute intensive rehabilitation in patients with severe traumatic brain injury (sTBI).

Completed16 enrollment criteria

Early Neuroprognostication After OHCA

Cardiac ArrestNeurological Outcome4 more

This is a prospective observational substudy of the STEPCARE trial ClinicalTrials.gov Identifier: NCT05564754) with the aim to examine whether prognostication of neurological outcome after cardiac arrest can be performed earlier than the 72 h time-point recommended by guidelines today.

Not yet recruiting10 enrollment criteria

Automated Robotic TCD in Traumatic Brain Injury

Brain InjuriesTraumatic

This study's objective is to determine the safety, feasibility and efficacy of prolonged automated robotic TCD monitoring in critically ill patients with severe TBI across multiple clinical sites with varying levels of TCD availability and experience

Not yet recruiting11 enrollment criteria

Targeting Osteosarcopaenia and Multimorbidity for Frailty Prevention

StrokeTraumatic Brain Injury2 more

The aging population and its accompanying burden from non-communicable chronic diseases predicts an increasing impact imposed by frailty on healthcare systems. This is due to a lack of normative data for older adults and reliable risk stratification methods to develop effective approaches to the prevention of frailty. In this study, the investigators plan to form a common dataset for phenotype identification, risk stratification of frailty and its targeted treatment plans in the at-risk and mildly frail population.

Not yet recruiting19 enrollment criteria

Vagus Nerve Stimulation to Treat Moderate Traumatic Brain Injury

Traumatic Brain InjuryAcute Brain Injuries

The purpose of this single-center, prospective, randomized (1:1), double-blind, sham-controlled parallel-arm pilot study is to provide initial evidence of use of the noninvasive vagus nerve stimulator for treatment in patients recovering from concussion and moderate traumatic brain injury to improve clinical recovery. The study compares the safety and effectiveness of an active gammaCore treatment against a sham treatment.

Completed39 enrollment criteria

Functional Connectivity as a Biomarker of rTMS

Traumatic Brain Injury

Background: Traumatic brain injury (TBI) damages the connections between brain cells. This can lead to problems like memory loss. Repetitive transcranial magnetic stimulation (rTMS) can help improve connections between brain areas in healthy people. Researchers want to see if it can be useful in patients with memory problems after TBI. Objective: To see how repetitive transcranial magnetic stimulation can be used to improve the connections between parts of the brain and whether this will lead to changes in memory. Eligibility: Adults 18-50 years old with TBI who can speak and write in English. Healthy volunteers the same age and English ability. Design: Participants will be screened with a neurological exam and may have a urine pregnancy test. Participants with TBI will have 7-15 visits. Healthy volunteers will have 2-8 visits. At the visits, participants will have all or some of the following: MRI for about 1 hour. Participants will lie in a machine that takes pictures in a magnetic field. Participants will do some memory tasks. Memory and attention tasks with pictures and with a computer Questions about their mental state and well-being TMS: A wire coil is held on the scalp and a short electrical current passes through it. Participants will hear a click and feel a pulling or twitch. They may be asked to make simple movements. rTMS is repeated magnetic pulses in short bursts. They will have this for about 20 minutes. A week after the last visit, some participants will return for a memory test.

Completed21 enrollment criteria

Transcranial Electrical Stimulation for mTBI

Mild Traumatic Brain Injury (mTBI)Post-traumatic Stress Disorder

Mild traumatic brain injury (mTBI) is a leading cause of sustained physical, cognitive, emotional, and behavioral deficits in OEF/OIF/OND Veterans and the general public. However, the underlying pathophysiology is not completely understood, and there are few effective treatments for post-concussive symptoms (PCS). In addition, there are substantial overlaps between PCS and post-traumatic stress disorder (PTSD) symptoms in mTBI. IASIS is among a class of passive neurofeedback treatments that combine low-intensity pulses for transcranial electrical stimulation (LIP-tES) with electroencephalography (EEG) monitoring. Nexalin is another tES technique , with FDA approvals for treating insomnia, depression, and anxiety. LIP-tES techniques have shown promising results in alleviating PCS individuals with TBI. However, the neural mechanisms underlying the effects of LIP-tES treatment in TBI are unknown, owing to the dearth of neuroimaging investigations of this therapeutic intervention. Conventional neuroimaging techniques such as MRI and CT have limited sensitivity in detecting physiological abnormalities caused by mTBI, or in assessing the efficacy of mTBI treatments. In acute and chronic phases, CT and MRI are typically negative even in mTBI patients with persistent PCS. In contrast, evidence is mounting in support of resting-state magnetoencephalography (rs-MEG) slow-wave source imaging (delta-band, 1-4 Hz) as a marker for neuronal abnormalities in mTBI. The primary goal of the present application is to use rs-MEG to identify the neural underpinnings of behavioral changes associated with IASIS treatment in Veterans with mTBI. Using a double-blind placebo controlled design, the investigators will study changes in abnormal MEG slow-waves before and after IASIS treatment (relative to a 'sham' treatment group) in Veterans with mTBI. For a subset of participants who may have remaining TBI symptoms at the end of all IASIS treatment sessions, MEG slow-wave changes will be recorded before and after additional Nexalin treatment. In addition, the investigators will examine treatment-related changes in PCS, PTSD symptoms, neuropsychological test performances, and their association with changes in MEG slow-waves. The investigators for the first time will address a fundamental question about the mechanism of slow-waves in brain injury, namely whether slow-wave generation in wakefulness is merely a negative consequence of neuronal injury or if it is a signature of ongoing neuronal rearrangement and healing that occurs at the site of the injury. Specific Aim 1 will detect the loci of injury in Veterans with mTBI and assess the mechanisms underlying functional neuroimaging changes related to IASIS treatment, and for a subset of Veterans with remaining symptoms, additional Nexalin treatment, using rs-MEG slow-wave source imaging. The investigators hypothesize that MEG slow-wave source imaging will show significantly higher sensitivity than conventional MRI in identifying the loci of injury on a single-subject basis. The investigators also hypothesize that in wakefulness, slow-wave generation is a signature of ongoing neural rearrangement / healing, rather than a negative consequence of neuronal injury. Furthermore, the investigators hypothesize IASIS will ultimately reduce abnormal MEG slow-wave generation in mTBI by the end of the treatment course, owing to the accomplishment of neural rearrangement / healing. Specific Aim 2 will examine treatment-related changes in PCS and PTSD symptoms in Veterans with mTBI. The investigators hypothesize that compared with the sham group, mTBI Veterans in the IASIS treatment group will show significantly greater decreases in PCS and PTSD symptoms between baseline and post-treatment assessments. Specific Aim 3 will study the relationship among IASIS treatment-related changes in rs-MEG slow-wave imaging, PCS, and neuropsychological measures in Veterans with mTBI. The investigators hypothesize that Reduced MEG slow-wave generation will correlate with reduced total PCS score, individual PCS scores (e.g., sleep disturbance, post-traumatic headache, photophobia, and memory problem symptoms), and improved neuropsychological exam scores between post-IASIS and baseline exams. The success of the proposed research will for the first time confirm that facilitation of slow-wave generation in wakefulness leads to significant therapeutic benefits in mTBI, including an ultimate reduction of abnormal slow-waves accompanied by an improvement in PCS and cognitive functioning.

Completed31 enrollment criteria

Guided Training for People With Cognitive Impairment

TBI (Traumatic Brain Injury)Stroke1 more

Abstract Objective: Investigators examined the feasibility of applying a participation-focused strategy training intervention to community-dwelling adults with cognitive impairments following stroke and brain injury and evaluated its potential effect on participation. Method: Participants with a diagnosis of stroke or brain injury participated in this single-group, repeated-measures study. Participants received 1~2 sessions of strategy training intervention weekly for 8~18 sessions. Outcome measures included the Participation Measure--3 Domains, 4 Dimensions (PM-3D4D), the Canadian Occupational Performance Measure (COPM), and feasibility indicators (participants' recruitment, retention, attendance, engagement, comprehension, satisfaction, and intervention adherence).

Completed9 enrollment criteria

Feasibility of a Cognitive Intervention for Youth Post Concussion

Mild Traumatic Brain InjuryConcussion1 more

The purpose of this study is to evaluate the feasibility and effects of a cognitive intervention for youth following concussion

Completed7 enrollment criteria
1...969798...205

Need Help? Contact our team!


We'll reach out to this number within 24 hrs