Effectiveness of a Powered Exoskeleton Combined With FES for Patients With Chronic SCI: a RCT
Spinal Cord InjuriesGait Disorders1 moreWhile there are a number of prospective studies evaluating powered exoskeletons in SCI patients, to date, not a single well-designed, randomized clinical trial has been published. However, there is evidence for beneficial effects of over-ground exoskeleton therapy on walking function post-intervention from a meta-analysis on non-randomized, uncontrolled studies. Functional electrical stimulation (FES), on the other hand, is a common and established method for the rehabilitation of persons with SCI and has been demonstrated to be beneficial in, e.g., improving muscle force, power output and endurance. Combining FES and overground robotic therapy within the same therapy session could potentially merge and potentiate the effects of each separate treatment, making it a very powerful and efficient therapy method. Up to date, however, comparative studies evaluating benefits of this combined approach (i.e., powered exoskeleton and FES) to robotic therapy without FES are missing.
Transcutaneous Stimulation in Spinal Cord Injury
Spinal Cord InjuryCardiovascular disease has become the leading cause of death in the spinal cord injury population. Increased reliance on the renin-angiotensin-aldosterone system (RAAS) is believed to decrease falls in blood pressure when moving from a laying down position to upright; however, findings in the general population link the RAAS with remodeling and restructuring of the arterial walls. Therefore, intervention to stabilize and normalize blood pressure should be a priority in individuals with spinal cord injury who have low blood pressure. Advances in stimulation on the skin of the spinal cord offer an approach to restore cardiovascular control and improve blood pressure regulation; however, electrode placement and stimulation parameters needed to increase blood pressure are not well understood. Therefore, the aim of the study is to identify placement of electrodes on the skin, and frequency and amplitude of the stimulation to regulate blood pressure.
Effectiveness of Robot-assisted Upper-limb Exercise in Cervical SCI
Cervical Vertebrae InjuryThe aim of the project is to test the effectiveness of robot-assisted upper-limb exercise in persons after cervical spinal cord injury. In a randomised controlled two-arm trial, the effect of adding two types of robot-assisted upper-limb exercise to standard occupational therapy will be tested. Three primary and two secondary outcomes will be assessed using well-established measures.
TSCS for Acute SCI
Acute Spinal Cord InjuryBlood Pressure1 moreThis project will focus on a novel approach to stabilizing blood pressure (BP) during inpatient rehabilitation after acute SCI. After SCI, people have unstable blood pressure, ranging from too low (orthostatic hypotension) to too high (autonomic dysreflexia). Unstable BP often interferes with performing effective physical rehabilitation after SCI. A critical need exists for the identification of safe, practical and effective treatment options that stabilize BP after traumatic SCI. Transcutaneous Spinal Cord Stimulation (TSCS) has several advantages over pharmacological approaches: (1) does not exacerbate polypharmacy, (2) can be activated/deactivated rapidly, and (3) can be applied in synergy with physical exercise. The study team is asking the key question: "What if applying TSCS earlier after injury could prevent the development of BP instability?" To facilitate adoption of TSCS for widespread clinical use, the study team plans to map and develop a parameter configuration that will result in an easy to follow algorithm to maximize individual benefits, while minimizing the burden on healthcare professionals. This project will provide the foundational evidence to support the feasible and safe application of TSCS in the newly injured population, thereby overcoming barriers to engagement in prescribed inpatient rehabilitation regimens that are imposed by BP instability.
Spinal COrd NeuromodulaTor by SpIneX and ScoNE to Treat NeurogeniC BladdEr - SCONE "CONTINENCE"...
Neurogenic BladderSpinal Cord Injuries (Complete and Incomplete)2 moreThe purpose of this study is to evaluate the effectiveness and safety of SCONE neuromodulation therapy after 12 weeks of therapy in comparison to inactive sham control in improving symptoms of Neurogenic Lower Urinary Tract Dysfunction
The Relationship Between Irisin and Bone Health in Individuals With Spinal Cord Injury
Spinal Cord InjuryThis study will examine the relationship between circulating irisin and bone health individuals with spinal cord injury. Additionally, this study seeks to examine the influence of muscle fiber type on circulating irisin and identify an exercise-based means to increase irisin concentrations.
Improving Grasp Function in People With Sensorimotor Impairments by Combining Electrical Stimulation...
StrokeSpinal Cord Injuries1 moreHand motor and sensory impairments resulting from neurological disorders or injuries affect more than 50 million individuals worldwide. Conditions such as stroke, spinal cord injury (SCI), and traumatic brain injury (TBI) can cause long-term hand impairments, greatly impacting daily activities and social integration. Since traditional physiotherapy has limited effectiveness in rehabilitation, assistive devices helping in performing in daily activities have emerged as a necessary solution. Soft exoskeletons offer advantages as they are more comfortable and adaptable for the user, but they often struggle to generate sufficient force. On the other hand, electrical stimulation garments, like e-sleeves, show promise by stimulating nerves and muscles in the forearm. However, achieving precise and stable movement control remains challenging due to difficulties in electrode placement for targeted stimulation. Furthermore, none of the currently available devices are capable of artificially restoring lost sensation in users' hands, limiting their ability to manipulate with fragile objects. Recognizing these limitations, our study proposes a solution that combines a standard hand soft exoskeleton with: (i) electrical stimulation to the fingers' flexor and extensor muscles to generate artificial muscle contractions synchronized with the exoskeleton motion, compensating for the lack of gripping force, and (ii) electrical stimulation to the nerves to artificially restore the lost sensation of touch, enabling users to receive feedback on the force they are applying when interacting with the environment. The investigators refer to this proposed combination as Sensible-Exo. To achieve this goal, our project aims to evaluate the functional improvements in assistive and rehabilitative scenarios using SensoExo in comparison to use only the exoskeleton or having no support at all. The exoskeleton will be coupled with an electrical stimulating sleeve capable of delivering non-invasive electrical stimulation in the form of Functional Electrical Stimulation (FES) and Transcutaneous Electrical Nerve Stimulation (TENS). A glove with embedded force and bending sensors will be used to modulate the electrical stimulation. Additionally, apart from studying the enhancement of functional tasks, the investigators will explore improvements in body perception, representation, and multi-sensory integration. Indeed, the investigators also aim at identifying the way patients perceive their body by means of ad-hoc virtual reality assessments that has been developed. Before each assessment patient will perform some predefined movement in virtual reality to familiarize with it and increase embodiment. During the study, participants will perform a range of tasks based on their residual abilities, including motor tasks (e.g., grab and release, Toronto Rehabilitation Institute Hand Function Test, grip force regulation test, virtual egg test), cognitive tasks (dual tasks), and assessments of body representation and perception. Some of these tasks will be conducted in Virtual Reality environments, both with and without active stimulation.
NVG-291 in Spinal Cord Injury Subjects
Spinal Cord InjuriesChronic Spinal Cord Injury1 moreA Single site (Shirley Ryan AbilityLab) Randomized, Double-Blind, Placebo-Controlled Phase 1b/2a Study of NVG-291 in Spinal Cord Injury Subjects
Speed of Robotic Leg Movements and Orthostatic Hypotension in Subacute SCI
Spinal Cord InjuriesOrthostatic HypotensionThis study seeks to evaluate whether the speed (cadence) of lower extremity robotic movement has an impact on orthostatic hypotension and upright tolerance when training with the ErigoPro robotic tilt-stepper. It is hypothesized more frequent short-lasting leg movements (faster cadence) reduces the occurrence/severity of orthostatic hypotension better than less frequent longer-lasting leg movements (slower cadence).
Psychosocial, Cognitive, and Behavioral Consequences of Sleep-disordered Breathing After SCI
Spinal Cord InjuriesSleep ApneaThis clinical trial will examine the efficacy of continuous positive airway pressure (CPAP) therapy in improving psychosocial, neurocognitive and behavioral consequences of moderate-to-severe sleep-related breathing disorders (SRBDs) in people living with spinal cord injury (SCI).