search

Active clinical trials for "Brain Injuries, Traumatic"

Results 351-360 of 1495

Imaging of Injury Mechanism and Interaction of Intestinal Bacteria in Children With Mild Traumatic...

MTBI - Mild Traumatic Brain Injury

Traumatic brain injury (TBI) is the leading cause of disability in children and young adults. Children with moderate to severe TBI are typically at risk of poor functional outcome in terms of neurocognitive impairment and behavior problems. Neurocognitive impairments include deficits in attention and working memory, learning and memory, and executive functioning, whereas behavior problems include anxiety, depression and aggression. Neuroimaging techniques based on multi-modal magnetic resonance image (MRI) can detect the structural and functional brain abnormalities objectively and sensitively. Recent evidence indicates that even after mild TBI, children with risk factors for intracranial pathology are at risk of poor neurocognitive and behavioral outcome.Meanwhile, recently, the concept of "gut-brain axis" has been proposed and hint gut microbiota could shape the brain. Some studies have emphasized that human gut microbiota plays an important role in the pathogenesis and development of TBI. However, how the gut affects the brain in patients with TBI is unclear. Thus, combining analysis of neuroimaging and "gut-brain axis" will provide more information for finding the risk factors and imaging diagnostic markers of brain impairment in TBI. It will also helpful for explaining the underlying mechanisms of brain impairment in TBI, providing an objective basis for clinical diagnosis and prediction of the prognosis.

Recruiting8 enrollment criteria

Exploring Accessible Beauty for Individuals With Upper Extremity Deficits

StrokeIschemic14 more

The purpose of this study is to investigate the accessibility of beauty products for individuals with upper extremity disabilities. By examining various factors such as packaging design, product applicators, and ease of use, this research aims to identify barriers faced by individuals with upper extremity disabilities or visual deficits when using beauty products. The study seeks to provide insights and recommendations for improving the accessibility of beauty products, ultimately promoting inclusivity and enhancing the overall beauty experience for individuals with disabilities.

Recruiting14 enrollment criteria

Geri-TBI: A Prospective Multi-center Evaluation of Geriatric Patients With Traumatic Brain Injury...

Traumatic Brain Injury

This multicenter prospective observational study is designed to prospectively record data on patients who are managed per institutional standard of care. The objectives of this study are to establish an aggregate database of information on baseline clinical and demographic characteristics, medication use, markers of frailty, injury characteristics, management strategies, and outcomes following TBI in geriatric patients, determine best practices for management of geriatric patients with TBI, and establish how markers of frailty correlate with outcome in geriatric patients with TBI.

Recruiting6 enrollment criteria

Comparison of Narcotrend and Cerebral Function Analysing Monitor in Intensive Care to Monitor Seizures...

Traumatic Brain InjurySubarachnoid Hemorrhage7 more

A study in the use of the Narcotrend depth of anaesthesia monitor to record a) seizures, and b) monitor a level of sedation referred to as 'burst suppression', in sedated patients in the adult and paediatric intensive care. Studies have shown that patients in coma on the intensive care unit may have subclinical in addition to clinical seizures. Subclinical seizures are seizures that do not show any outward signs and may go undetected. The current gold standard of recording seizures in the intensive care unit is by non-invasive, continuous monitoring of the electrical activity of the brain by electroencephalography (cEEG) using cerebral function analysing monitor (CFAM). This is recorded with simultaneous video recording and is performed by Clinical Neurophysiology departments. There has been a steady increase in demand for this service over recent years. Additionally, CFAM / cEEG is labour intensive and expensive. If trends continue, the proportion of hospitals offering CFAM / cEEG will continue to rise, creating increased demand for specialist staff, of which there are a finite number. Depth of anaesthesia monitors are used by anaesthetists to assess the level of anaesthesia in sedated patients using specialised, automated EEG analysis and are now recommended by NICE (DG6) to tailor anaesthetic dose to individual patients. This study aims to investigate the utility of the Narcotrend depth of anaesthesia monitor to monitor for seizures and burst suppression on the adult and paediatric intensive care unit. These monitors are cheaper and more widely available with the scope to be used at every bed space requiring neuro observation on the intensive care unit. The study aims to recruit all patients who are referred for CFAM / cEEG monitoring at Nottingham University Hospitals (NUH) Trust over a 12 month period. These patients will undergo simultaneous recording using CFAM / cEEG and depth of anaesthesia monitoring.

Recruiting12 enrollment criteria

Research of Optimal Cerebral Perfusion Pressure Diagnosis

TraumaBrain1 more

The research will investigate the hypothesis that timely identification of the optimal value of the cerebral perfusion pressure (optCPP) or optimal arterial blood pressure (optABP) is possible after detecting informative episodes of arterial blood pressure (ABP) that reflects the physiological autoregulatory reactions of the cerebral blood flow, This biomedical study will be conducted to test this hypothesis and to develop an algorithm for identification of optimal brain perfusion pressure within limited time (several tens of minutes). The goal of this observational study is to test the method of timely optimal cerebral perfusion pressure value or optimal arterial pressure value in intensive care patients after brain surgery. The main question it aims to answer are: how long it takes to identify optimal cerebral perfusion value when arterial blood pressure is changing within safe physiological limits. Objectives of the study To perform a prospective observational study by collecting multimodal physiological brain monitoring data: intracranial pressure (ICP), arterial blood pressure (ABP), End-tidal carbon dioxide (ETCO2), cerebral blood flow velocity (CBFV), ECG. To perform a retrospective analysis of the accumulated clinical monitoring data, in order to create an algorithm for the identification of informative monitoring data fragments, according to which it would be possible to identify the optimal cerebral perfusion pressure (optCPP) value in a limited time interval (within a few or a dozen minutes). To perform a retrospective analysis of accumulated clinical monitoring data, determining correlations of cerebral blood flow autoregulation and optCPP-related parameters with the clinical outcome of patients and with the risk of cerebral vasospasm or cerebral ischemia.

Recruiting8 enrollment criteria

Neuroplasticity After Proprioceptive Rehabiliation

StrokeHemiparesis1 more

Sequences of muscle tendon vibrations allow to reproduce the sensory feedback during movement like locomotion and kinaesthesia. It is known that such a treatment promotes motor recovery after stroke assuming that it enhances neuroplasticity. The aim of the research is to study the activity in cerebrospinal circuitry to evaluate the neuroplastic changes during and after instrumented proprioceptive rehabilitation relying on sequences of muscle vibration in subacute stroke stages.

Recruiting12 enrollment criteria

Estimating Brain Biomechanics Using MRI

Healthy VolunteerTraumatic Brain Injury3 more

Objective: In this study we will develop and apply imaging techniques to perform the first three-dimensional (3-D) measurements of brain biomechanics during mild head movement in healthy human subjects. Biomechanics is the application of mechanics, or the physical principles in action when force is applied to an object, to the anatomical structure and/or function of organisms. Such techniques will be invaluable for building computational models of brain biomechanics, understanding variability of brain biomechanics across individual characteristics, such as age and sex, and determining brain sub-structures at risk for damage when movement of the head is accelerated, such as during a traumatic event. Study Population: Measurements will be performed on 90 healthy men and women aged 18-65. Design: We will build upon the model pioneered by our collaborator, Dr. Philip Bayly. The model places a human subject in a magnetic resonance (MR) scanner with one of two head support units that allows a specific range of motion. Each head support is latched such that it can be released by the subject, and results in either a rotation of the head of approximately 30 degrees or a flexion-extension of the head of approximately 4 degrees. Although both supports are weighted so that the motion is repeatable if the subject is relaxed, the subject can easily counteract the weight. The resulting acceleration/deceleration is small (in the range of normal activities, such as turning one's head during swimming) and has been validated and used in other human investigations of brain biomechanics. The subject repeats the motion multiple times during the MR scan under their own volition and desired pace to measure motion of the head and brain. Outcome measures: This project is a pilot study evaluating the potential of extracting three-dimensional estimates of brain deformation, such as strain measurements, using MR imaging. A primary outcome of this project will be a fast MR acquisition sequence for measuring 3-D brain deformation. The sequence will be evaluated by applying the protocol to human subjects, followed by preliminary quantification of the reproducibility and stability of deformation measurements.

Recruiting13 enrollment criteria

SSVEP Evaluation of Brain Function (PRO)

Mild Traumatic Brain Injury

The investigational device used in this clinical investigation, the Nurochek PRO System (NCPRO), is a portable electroencephalogram (EEG) headset which delivers a visual stimulus and measures a VEP. The visual stimulus is delivered to the subjects' eyes via light-emitting diodes, and the EEG measures the user's visual-evoked potential. This headset communicates with an application on a computer, which processes the signals and transmits them to a secure cloud server for analysis and storage of the data. Nurochek PRO is a development of the previously FDA cleared Nurochek System. The primary objective of this clinical investigation was to evaluate the performance of the investigational device (NCPRO) against clinical diagnosis of detection of mild traumatic brain injury (mTBI). The primary endpoint outlined for this study was set at the collection of 100 valid investigational device readings from individuals with concussion and 500 valid investigational device readings from healthy individuals who have had a plausible mechanism of sustaining a concussion, but do not have one. Additionally, readings from healthy individuals are also to be acquired. The aim of this study was to collect data from 100 readings from individuals with concussion. The initial assumption was that sites would provide players pre-season and make players available for testing post-concussion. In practice, some sites provided player data only post-concussion event (such as medical clinics). Participants were acquired from sporting clubs, medical clinicals and schools.

Recruiting2 enrollment criteria

Translational Research Center for TBI and Stress Disorders: Virtual Assessment of Deployment Trauma...

TBI (Traumatic Brain Injury)PTSD

For this clinical demonstration study, Veterans will be assessed with a battery of questionnaires/surveys and a 1:1 clinical interview with a V-TRACTS psychologist to target domains of head injury, psychological trauma, depression, suicidality, anxiety, chronic pain and sleep, substance use and activity level. V-TRACTS will convene a weekly consensus meeting to evaluate all the data, and develop a recommendation plan. After the consensus meeting, a V-TRACTS psychologist will provide comprehensive feedback encompassing the entire assessment battery. Additionally, if warranted, the investigators will offer an optional cognitive assessment, as well as rehabilitation options that the consensus committee targets the individual Veteran's needs and also via VA telehealth or other approved online service. It will be the Veteran's choice whether he/she wants to participate in any one or more of these options.

Recruiting7 enrollment criteria

Validation of the Scandinavian Guidelines for Minor and Moderate Head Trauma in Children

Brain InjuriesTraumatic

Head injuries are common among children and adolescents, with many of them assessed in emergency departments each year. Most children recover fast, with full resolution of symptoms as headache, dizziness or fatigue. A few, however, develop life-threatening complications (such as bleedings in/around the brain). It can be difficult to swiftly and accurately identify these patients in the emergency department. To aid in this task, decision support tools has been developed. The goal of this observational study is to evaluate a Scandinavian tool developed to aid in management of children with head injuries seeking care in an emergency department. The main research question is: - Are the Scandinavian guidelines for management of mild and moderate head trauma in children sensitive for patient-important outcomes? Patients will be given the same treatment and recommendations for their head injury no matter if they participate or not in the study, as there is no intervention/ treatment group. The doctor or nurse managing the child will collect information on patient history, signs and symptoms in the emergency department and management in an electronic case report form. Information on how the recovery period is collected both from medical records >1 month after the emergency department visit, as well as via electronic questionnaires sent to the guardian at 1 month, 3 months and 4 months after the injury via e-mail and/or text message. Long-term outcome will also be examined (>6 months).

Recruiting9 enrollment criteria
1...353637...150

Need Help? Contact our team!


We'll reach out to this number within 24 hrs