search

Active clinical trials for "Leukemia, Erythroblastic, Acute"

Results 1-10 of 83

Cord Blood Transplant With Dilanubicel for the Treatment of HIV Positive Hematologic Cancers

Acute Erythroid LeukemiaAcute Lymphoblastic Leukemia10 more

This phase II trial studies the side effects of a cord blood transplant using dilanubicel and to see how well it works in treating patients with human immunodeficiency virus (HIV) positive hematologic (blood) cancers. After a cord blood transplant, the immune cells, including white blood cells, can take a while to recover, putting the patient at increased risk of infection. Dilanubicel consists of blood stem cells that help to produce mature blood cells, including immune cells. Drugs used in chemotherapy, such as fludarabine, cyclophosphamide, and thiotepa, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Total body irradiation is a type of whole-body radiation. Giving chemotherapy and total-body irradiation before a cord blood transplant with dilanubicel may help to kill any cancer cells that are in the body and make room in the patient's bone marrow for new stem cells to grow and reduce the risk of infection.

Recruiting31 enrollment criteria

Clofarabine or Daunorubicin Hydrochloride and Cytarabine Followed By Decitabine or Observation in...

Acute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic SyndromeAdult Acute Megakaryoblastic Leukemia (M7)15 more

This randomized phase III trial studies clofarabine to see how well it works compared with daunorubicin hydrochloride and cytarabine when followed by decitabine or observation in treating older patients with newly diagnosed acute myeloid leukemia. Drugs used in chemotherapy, such as clofarabine, daunorubicin hydrochloride, cytarabine, and decitabine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving more than one drug (combination chemotherapy) may kill more cancer cells. It is not yet known which chemotherapy regimen is more effective in treating acute myeloid leukemia.

Active55 enrollment criteria

Vorinostat and Azacitidine in Treating Patients With Myelodysplastic Syndromes or Acute Myeloid...

Acute Erythroid LeukemiaAcute Megakaryoblastic Leukemia7 more

This phase I/II trial studies the side effects and best dose of vorinostat and azacitidine and to see how well they work in treating patients with myelodysplastic syndromes or acute myeloid leukemia. Vorinostat may stop the growth of cancer or abnormal cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as azacitidine, work in different ways to stop the growth of cancer or abnormal cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving vorinostat together with azacitidine may kill more cancer or abnormal cells.

Active44 enrollment criteria

Azacitidine and Gemtuzumab Ozogamicin in Treating Older Patients With Previously Untreated Acute...

Acute Myeloid LeukemiaAdult Acute Megakaryoblastic Leukemia12 more

This phase II trial is studying the side effects of giving azacitidine together with gemtuzumab ozogamicin to see how well it works in treating older patients with previously untreated acute myeloid leukemia. Drugs used in chemotherapy, such as azacitidine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Azacitidine may also stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Monoclonal antibodies, such as gemtuzumab ozogamicin, can block cancer growth in different ways. Some block the ability of cancer cells to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them. Giving azacitidine together with gemtuzumab ozogamicin may kill more cancer cells.

Active32 enrollment criteria

Veliparib and Topotecan With or Without Carboplatin in Treating Patients With Relapsed or Refractory...

Adult Acute Megakaryoblastic LeukemiaAdult Acute Monoblastic Leukemia23 more

This phase I trial is studying the side effects and best dose of veliparib when given together with topotecan hydrochloride with or without carboplatin in treating patients with relapsed or refractory acute leukemia, high-risk myelodysplasia, or aggressive myeloproliferative disorders. Veliparib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as topotecan hydrochloride and carboplatin, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving veliparib together with topotecan hydrochloride and carboplatin may kill more cancer cells.

Active38 enrollment criteria

Eltrombopag Olamine in Improving Platelet Recovery in Older Patients With Acute Myeloid Leukemia...

Acute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic SyndromeAdult Acute Basophilic Leukemia17 more

This phase II trial studies how well eltrombopag olamine works in improving the recovery of platelet counts in older patients with Acute Myeloid Leukemia (AML) undergoing induction (the first treatment given for a disease) chemotherapy. Platelet counts recover more slowly in older patients, leading to risk of complications and the delay of post-remission therapy. Eltrombopag olamine may cause the body to make platelets after chemotherapy.

Active25 enrollment criteria

Decitabine Followed by Idarubicin and Cytarabine in Treating Patients With Relapsed or Refractory...

Adult Acute Megakaryoblastic Leukemia (M7)Adult Acute Monoblastic Leukemia (M5a)13 more

The goals of this study are to learn about the effectiveness, the side-effects, if waiting to give the idarubicin and cytarabine may change the side effects or effectiveness, and to identify factors to predict for responses to this therapy. The trial will examine combination of three chemotherapy drugs. These drugs are decitabine, idarubicin, and cytarabine.

Terminated29 enrollment criteria

Donor Stem Cell Transplant in Treating Patients With High Risk Acute Myeloid Leukemia

Adult Acute Megakaryoblastic Leukemia (M7)Adult Acute Monoblastic Leukemia (M5a)25 more

This phase I trial studies the side effects of donor stem cell transplant in treating patients with high risk acute myeloid leukemia. Giving low doses of chemotherapy before a donor peripheral blood stem cell transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells when they do not exactly match the patient's blood. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect)

Terminated46 enrollment criteria

Ixazomib (MLN9708) in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

Adult Acute Megakaryoblastic Leukemia (M7)Adult Acute Minimally Differentiated Myeloid Leukemia (M0)13 more

This phase 2 trial studies how well ixazomib(MLN9708) works in treating study participants with relapsed or refractory acute myeloid leukemia. Ixazomib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.

Terminated31 enrollment criteria

Donor Peripheral Blood Stem Cell Transplant in Treating Patients With Hematologic Malignancies

Acute Biphenotypic LeukemiaAcute Erythroid Leukemia in Remission28 more

This phase II trial studies how well donor peripheral blood stem cell (PBSC) transplant works in treating patients with hematologic malignancies. Cyclophosphamide when added to tacrolimus and mycophenolate mofetil is safe and effective in preventing severe graft-versus-host disease (GVHD) in most patients with hematologic malignancies undergoing transplantation of bone marrow from half-matched (haploidentical) donors. This approach has extended the transplant option to patients who do not have matched related or unrelated donors, especially for patients from ethnic minority groups. The graft contains cells of the donor's immune system which potentially can recognize and destroy the patient's cancer cells (graft-versus-tumor effect). Rejection of the donor's cells by the patient's own immune system is prevented by giving low doses of chemotherapy (fludarabine phosphate and cyclophosphamide) and total-body irradiation before transplant. Patients can experience low blood cell counts after transplant. Using stem cells and immune cells collected from the donor's circulating blood may result in quicker recovery of blood counts and may be more effective in treating the patient's disease than using bone marrow.

Terminated47 enrollment criteria
12...9

Need Help? Contact our team!


We'll reach out to this number within 24 hrs