search

Active clinical trials for "Leukemia, Myelomonocytic, Juvenile"

Results 151-160 of 306

Haploidentical Stem Cell Transplant for Treatment Refractory Hematological Malignancies

Acute Lymphoblastic Leukemia (ALL)Acute Myeloid Leukemia (AML)9 more

Relapsed disease is the most common cause of death in children with hematological malignancies. Patients who fail high-intensity conventional chemotherapeutic regimens or relapse after stem cell transplantation have a poor prognosis. Toxicity from multiple therapies and elevated leukemic/tumor burden usually make these patients ineligible for the aggressive chemotherapy regimens required for conventional stem cell transplantation. Alternative options are needed. One type of treatment being explored is called haploidentical transplant. Conventional blood or bone marrow stem cell transplant involves destroying the patient's diseased marrow with radiation or chemotherapy. Healthy marrow from a donor is then infused into the patient where it migrates to the bone marrow space to begin generating new blood cells. The best type of donor is a sibling or unrelated donor with an identical immune system (HLA "match"). However, most patients do not have a matched sibling available and/or are unable to identify an acceptable unrelated donor through the registries in a timely manner. In addition, the aggressive treatment required to prepare the body for these types of transplants can be too toxic for these highly pretreated patients. Therefore doctors are investigating haploidentical transplant using stem cells from HLA partially matched family member donors. Although haploidentical transplant has proven curative in many patients, this procedure has been hindered by significant complications, primarily regimen-related toxicity including graft versus host disease (GVHD), and infection due to delayed immune reconstitution. These can, in part, be due to certain white blood cells in the graft called T cells. GVHD happens when the donor T cells recognize the patient's (the host) body tissues are different and attack these cells. Although too many T cells increase the possibility of GVHD, too few may cause the recipient's immune system to reconstitute slowly or the graft to fail to grow, leaving the patient at high-risk for infection. However, the presence of T cells in the graft may offer a positive effect called graft versus malignancy or GVM. With GVM, the donor T cells recognize the patient's malignant cells as diseased and, in turn, attack these diseased cells. For these reasons, a primary focus for researchers is to engineer the graft to provide a T cell depleted product to reduce the risk of GVHD, yet provide a sufficient number of cells to facilitate immune reconstitution, graft integrity and GVM. In this study, patients were given a haploidentical graft engineered to with specific T cell parameter values using the CliniMACS system. A reduced intensity, preparative regimen was used to reduce regimen-related toxicity and mortality. The primary goal of this study is to evaluate overall survival in those who receive this study treatment.

Completed20 enrollment criteria

Imatinib Mesylate in Patients With Various Types of Malignancies Involving Activated Tyrosine Kinase...

Hypereosinophilic SyndromeSystemic Mastocytosis2 more

This trial is for various types of malignancies which may depend on certain enzymes (tyrosine kinases) for growth. The objective of this study is to assess to what extent imatinib mesylate blocks these enzymes and to assess the effect on the malignancy.

Completed7 enrollment criteria

Combination Chemotherapy Followed By Donor Bone Marrow or Umbilical Cord Blood Transplant in Treating...

Juvenile Myelomonocytic Leukemia

Giving chemotherapy drugs, such as R115777, isotretinoin, cytarabine, and fludarabine, before a donor bone marrow transplant or an umbilical cord transplant helps stop the growth of cancer cells. It also helps stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. This phase II trial is studying how well giving combination chemotherapy together with donor bone marrow or umbilical cord blood transplant works in treating children with newly diagnosed juvenile myelomonocytic leukemia

Completed16 enrollment criteria

CCI-779 in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia, Acute Lymphoblastic...

Adult Acute Myeloid Leukemia With 11q23 (MLL) AbnormalitiesAdult Acute Myeloid Leukemia With Inv(16)(p13;q22)13 more

Drugs used in chemotherapy such as CCI-779 work in different ways to stop cancer cells from dividing so they stop growing or die. This phase II trial is studying how well CCI-779 works in treating patients with relapsed or refractory acute myeloid leukemia, acute lymphoblastic leukemia, myelodysplastic syndrome, or chronic myelogenous leukemia in blastic phase

Completed36 enrollment criteria

Fludarabine Phosphate, Low-Dose Total-Body Irradiation, and Donor Stem Cell Transplant Followed...

Acute Undifferentiated LeukemiaAdult Nasal Type Extranodal NK/T-cell Lymphoma63 more

This clinical trial studies fludarabine phosphate, low-dose total-body irradiation, and donor stem cell transplant followed by cyclosporine, mycophenolate mofetil, and donor lymphocyte infusion in treating patients with hematopoietic cancer. Giving low doses of chemotherapy, such as fludarabine phosphate, and total body irradiation (TBI) before a donor peripheral blood stem cell transplant helps stop the growth of cancer cells. It may also keep the patient's immune response from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Giving an infusion of the donor's T cells (donor lymphocyte infusion) after the transplant may help increase this effect. Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving cyclosporine and mycophenolate mofetil after the transplant may stop this from happening.

Completed36 enrollment criteria

Yttrium-90 Anti CD66 Monoclonal Antibody in Childhood Relapsed/Refractory Leukaemia

Acute Myeloblastic LeukemiaAcute Lymphoblastic Leukemia1 more

The radio-labeled anti-CD66 monoclonal antibody (with 111In for dosimetry and 90Y for therapy) will be administered in the T11 North room, UCLH, while the reduced intensity conditioning regimen and the allogeneic hematopoietic stem cell transplant will be performed in 2 centers, according to the age of the patient: A) patients aged < 13 years will be transplanted at the Bone Marrow Transplantation Department, Great Ormond Street Hospital (GOSH), and B) patients aged 13-18 years will be transplanted at the Bone Marrow Transplantation Department, University College London Hospitals (UCLH).

Completed18 enrollment criteria

Continuation Study of B1371019(NCT03416179) and B1371012(NCT02367456) Evaluating Azacitidine With...

Acute Myeloid LeukemiaMyelodysplastic Syndrome1 more

An open-label study available to all eligible participants from Study B1371019 and participants originating from Study B1371012 continuing on study intervention with azacitidine with or without glasdegib.

Completed5 enrollment criteria

A Study of PRT543 in Participants With Advanced Solid Tumors and Hematologic Malignancies

Relapsed/Refractory Advanced Solid TumorsRelapsed/Refractory Diffuse Large B-cell Lymphoma6 more

This is a Phase 1 cohort, dose-escalation, dose-expansion study of PRT543 in patients with advanced cancers who have exhausted available treatment options. The purpose of this study is to define a safe dose and schedule to be used in subsequent development of PRT543.

Completed11 enrollment criteria

Study of PDR001 and/or MBG453 in Combination With Decitabine in Patients With AML or High Risk MDS...

LeukemiaLeukemia9 more

To characterize the safety and tolerability of 1) MBG453 as a single agent or in combination with PDR001 or 2) PDR001 and/or MBG453 in combination with decitabine or azacitidine in AML and intermediate or high- risk MDS patients, and to identify recommended doses for future studies.

Completed23 enrollment criteria

Early Allogeneic Hematopoietic Cell Transplantation in Treating Patients With Relapsed or Refractory...

Blasts 10 Percent or More of Bone Marrow Nucleated CellsChronic Myelomonocytic Leukemia-27 more

This clinical trial studies how well early stem cell transplantation works in treating patients with high-grade myeloid neoplasms that has come back after a period of improvement or does not respond to treatment. Drugs used in chemotherapy, such as filgrastim, cladribine, cytarabine and mitoxantrone hydrochloride, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving chemotherapy before a donor peripheral blood cell transplant helps stop the growth of cells in the bone marrow, including normal blood-forming cells (stem cells) and cancer cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. The donated stem cells may also replace the patient's immune cells and help destroy any remaining cancer cells. Early stem cell transplantation may result in more successful treatment for patients with high-grade myeloid neoplasms.

Completed46 enrollment criteria
1...151617...31

Need Help? Contact our team!


We'll reach out to this number within 24 hrs