Volasertib in Combination With Azacitidine in Japanese Patients With Myelodysplastic Syndrome or...
Myelodysplastic SyndromesLeukemia2 moreTo identify the maximum tolerated dose or recommended dose for further development of volasertib in combination with azacitidine in Japanese patients with myelodysplastic syndromes or chronic myelomonocytic leukemia, and evaluate the safety and tolerability, pharmacokinetics and the preliminary efficacy of this combination.
Nivolumab and Azacitidine With or Without Ipilimumab in Treating Patients With Refractory/Relapsed...
Acute Bilineal LeukemiaAcute Biphenotypic Leukemia7 moreThis phase II trial studies the side effects and best dose of nivolumab and azacitidine with or without ipilimumab when given together and to see how well they work in treating patients with acute myeloid leukemia that has not responded to previous treatment or has returned after a period of improvement or is newly diagnosed. Monoclonal antibodies, such as nivolumab and ipilimumab, may interfere with the ability of cancer cells to grow and spread. Drugs used in chemotherapy, such as azacitidine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving nivolumab, azacitidine and ipilimumab may kill more cancer cells.
Tipifarnib in Subjects With Chronic Myelomonocytic Leukemia, Other MDS/MPN, and Acute Myeloid Leukemia...
LeukemiaMyelomonocytic1 moreA Phase 2 study to investigate the antitumor activity in terms of overall response rate (ORR) of tipifarnib in approximately 36 eligible subjects with Myelodysplastic/Myeloproliferative Neoplasias (MDS/MPN), including Chronic Myelomonocytic Leukemia (CMML), and 36 eligible subjects with Acute Myeloid Leukemia (AML). Subjects (amendment 3 Cohorts 1-4) will receive tipifarnib administered at a dose of 400 mg, orally with food, twice a day (bid) for 21 days in 28 day cycles.
Vorinostat, Cytarabine, and Etoposide in Treating Patients With Relapsed and/or Refractory Acute...
Accelerated Phase Chronic Myelogenous LeukemiaAdult Acute Basophilic Leukemia34 moreThis phase I trial is studying the side effects and best dose of vorinostat when given together with cytarabine and etoposide in treating patients with relapsed or refractory acute leukemia or myelodysplastic syndromes or myeloproliferative disorders. Vorinostat may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as cytarabine and etoposide, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving vorinostat together with cytarabine and etoposide may kill more cancer cells.
Etanercept in Treating Young Patients With Idiopathic Pneumonia Syndrome After Undergoing a Donor...
Accelerated Phase Chronic Myelogenous LeukemiaBlastic Phase Chronic Myelogenous Leukemia23 moreThis phase II trial is studying how well etanercept works in treating young patients with idiopathic pneumonia syndrome after undergoing a donor stem cell transplant. Etanercept may be effective in treating patients with idiopathic pneumonia syndrome after undergoing a donor stem cell transplant.
Belinostat and Azacitidine in Treating Patients With Advanced Hematologic Cancers or Other Diseases...
Accelerated Phase of DiseaseAdult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH1122 moreThis phase I trial is studying the side effects and best dose of belinostat when given together with azacitidine in treating patients with advanced hematologic cancers or other diseases. Belinostat may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the cancer. Drugs used in chemotherapy, such as azacitidine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving belinostat together with azacitidine may kill more cancer cells.
Vorinostat With or Without Isotretinoin in Treating Young Patients With Recurrent or Refractory...
Childhood Acute Promyelocytic Leukemia (M3)Childhood Atypical Teratoid/Rhabdoid Tumor18 moreThis phase I trial is studying the side effects and best dose of vorinostat when given together with isotretinoin in treating young patients with recurrent or refractory solid tumors, lymphoma, or leukemia. Drugs used in chemotherapy, such as vorinostat, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Vorinostat may also stop the growth of cancer cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the cancer. Isotretinoin may cause cancer cells to look more like normal cells, and to grow and spread more slowly. Giving vorinostat together with isotretinoin may be an effective treatment for cancer.
Stem Cell Transplantation for Patients With Hematologic Malignancies
Acute Lymphoblastic LeukemiasAcute Myelocytic Leukemia6 moreChildhood leukemias which cannot be cured by chemotherapy alone may be effectively treated by allogeneic bone marrow transplantation. Moreover, for patients with chronic myelogenous leukemia (CML), allogeneic hematopoietic stem cell transplantation (HSCT) is the only proven curative modality of treatment. Patients who have received hematopoietic stem cells from an HLA matched sibling donor have proven to be less at risk for disease relapse and regimen related toxicity. However, about 70% of patients in need of HSCT do not have an HLA matched sibling donor. This necessitates the search for alternative donors, which may increase the risk of a poor outcome. The nature of the hematopoietic stem cell graft has been implicated as a primary factor determining these outcomes. The standard stem cell graft has been unmanipulated bone marrow, but recently several advantages of T-lymphocyte depleted bone marrow and mobilized peripheral blood progenitor cells (PBPC) have been demonstrated. However, T-cell depletion may increase the risk of infectious complications and leukemic recurrence while an unmanipulated stem cell graft may increase the risk of graft vs. host disease (GVHD). A key element in long range strategies in improving outcomes for patients undergoing matched unrelated donor (MUD) HSCT is to provide the optimal graft. The primary objective of this clinical trial is to estimate the incidence of acute GVHD in pediatric patients with hematologic malignancies who receive HSCT with an unmanipulated marrow graft. The results of this study can be used as the foundation for future trials related to engineering unrelated donor graft.
Stem Cell Transplantation as Immunotherapy for Hematologic Malignancies
LeukemiaAcute Lymphoblastic Leukemia7 moreBlood and marrow stem cell transplant has improved the outcome for patients with high-risk hematologic malignancies. However, most patients do not have an appropriate HLA (immune type) matched sibling donor available and/or are unable to identify an acceptable unrelated HLA matched donor through the registries in a timely manner. Another option is haploidentical transplant using a partially matched family member donor. Although haploidentical transplant has proven curative in many patients, this procedure has been hindered by significant complications, primarily regimen-related toxicity including GVHD and infection due to delayed immune reconstitution. These can, in part, be due to certain white blood cells in the graft called T cells. GVHD happens when the donor T cells recognize the body tissues of the patient (the host) are different and attack these cells. Although too many T cells increase the possibility of GVHD, too few may cause the recipient's immune system to reconstitute slowly or the graft to fail to grow, leaving the patient at high-risk for significant infection. For these reasons, a primary focus for researchers is to engineer the graft to provide a T cell dose that will reduce the risk for GVHD, yet provide a sufficient number of cells to facilitate immune reconstitution and graft integrity. Building on prior institutional trials, this study will provide patients with a haploidentical graft engineered to specific T cell target values using the CliniMACS system. A reduced intensity, preparative regimen will be used in an effort to reduce regimen-related toxicity and mortality. Two groups of patients were enrolled on this study. One group included those with high-risk hematologic malignancies and the second group included participants with refractory hematologic malignancies or undergoing a second transplant. The primary aim of the study was to estimate the relapse rate in the one group of research participants with refractory hematologic malignancies or those undergoing second allogeneic transplant. Both groups will be followed and analyzed separately in regards to the secondary objectives. This study was closed to accrual on April 2006 as it met the specific safety stopping rules regarding occurrence of severe graft vs. host disease. Although this study is no longer open to accrual, the treated participants continue to be followed as directed by the protocol.
Tanespimycin and Cytarabine in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia,...
Accelerated Phase Chronic Myelogenous LeukemiaAdult Acute Basophilic Leukemia24 moreThis phase I trial is studying the side effects and best dose of tanespimycin when given with cytarabine in treating patients with relapsed or refractory acute myeloid leukemia, acute lymphoblastic leukemia, chronic myelogenous leukemia, chronic myelomonocytic leukemia, or myelodysplastic syndromes. Drugs used in chemotherapy, such as tanespimycin and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Tanespimycin may also help cytarabine kill more cancer cells by making cancer cells more sensitive to the drug. Giving tanespimycin together with cytarabine may kill more cancer cells.