A Phase 1/2 Study of SB1518 for the Treatment of Advanced Myeloid Malignancies
Acute Myelogenous LeukemiaChronic Myelogenous Leukemia3 moreThis study consists of two phases: the first portion of the study is a Phase 1 dose escalation study to determine the maximum tolerated dose and the dose limiting toxicities of SB1518 when given as a single agent orally once daily in subjects with advanced myeloid malignancies; the second portion of the study is a Phase 2 study to define the efficacy and safety profile of single-agent SB1518 at the recommended dose in subjects with chronic idiopathic myelofibrosis (CIMF).
MS-275 and GM-CSF in Treating Patients With Myelodysplastic Syndrome and/or Relapsed or Refractory...
Adult Acute Lymphoblastic Leukemia in RemissionAdult Acute Megakaryoblastic Leukemia (M7)27 moreThis phase II trial is studying how well giving MS-275 together with GM-CSF works in treating patients with myelodysplastic syndrome and/or relapsed or refractory acute myeloid leukemia. MS-275 may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the cancer. Colony-stimulating factors, such as GM-CSF, may increase the number of immune cells found in bone marrow or peripheral blood. Giving MS-275 together with GM-CSF may be an effective treatment for myelodysplastic syndrome and acute myeloid leukemia
Etanercept in Treating Young Patients With Idiopathic Pneumonia Syndrome After Undergoing a Donor...
Accelerated Phase Chronic Myelogenous LeukemiaBlastic Phase Chronic Myelogenous Leukemia23 moreThis phase II trial is studying how well etanercept works in treating young patients with idiopathic pneumonia syndrome after undergoing a donor stem cell transplant. Etanercept may be effective in treating patients with idiopathic pneumonia syndrome after undergoing a donor stem cell transplant.
Study of Lenzilumab in Previously Treated Patients With Chronic Myelomonocytic Leukemia (CMML)
Chronic Myelomonocytic Leukemia (CMML)This is a multicenter, open-label, repeat-dose, Phase 1 Dose Escalation Study to evaluate safety, pharmacokinetics, and clinical activity.
Vorinostat, Cytarabine, and Etoposide in Treating Patients With Relapsed and/or Refractory Acute...
Accelerated Phase Chronic Myelogenous LeukemiaAdult Acute Basophilic Leukemia34 moreThis phase I trial is studying the side effects and best dose of vorinostat when given together with cytarabine and etoposide in treating patients with relapsed or refractory acute leukemia or myelodysplastic syndromes or myeloproliferative disorders. Vorinostat may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as cytarabine and etoposide, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving vorinostat together with cytarabine and etoposide may kill more cancer cells.
Belinostat and Azacitidine in Treating Patients With Advanced Hematologic Cancers or Other Diseases...
Accelerated Phase of DiseaseAdult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH1122 moreThis phase I trial is studying the side effects and best dose of belinostat when given together with azacitidine in treating patients with advanced hematologic cancers or other diseases. Belinostat may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the cancer. Drugs used in chemotherapy, such as azacitidine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving belinostat together with azacitidine may kill more cancer cells.
Vorinostat With or Without Isotretinoin in Treating Young Patients With Recurrent or Refractory...
Childhood Acute Promyelocytic Leukemia (M3)Childhood Atypical Teratoid/Rhabdoid Tumor18 moreThis phase I trial is studying the side effects and best dose of vorinostat when given together with isotretinoin in treating young patients with recurrent or refractory solid tumors, lymphoma, or leukemia. Drugs used in chemotherapy, such as vorinostat, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Vorinostat may also stop the growth of cancer cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the cancer. Isotretinoin may cause cancer cells to look more like normal cells, and to grow and spread more slowly. Giving vorinostat together with isotretinoin may be an effective treatment for cancer.
Tanespimycin and Cytarabine in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia,...
Accelerated Phase Chronic Myelogenous LeukemiaAdult Acute Basophilic Leukemia24 moreThis phase I trial is studying the side effects and best dose of tanespimycin when given with cytarabine in treating patients with relapsed or refractory acute myeloid leukemia, acute lymphoblastic leukemia, chronic myelogenous leukemia, chronic myelomonocytic leukemia, or myelodysplastic syndromes. Drugs used in chemotherapy, such as tanespimycin and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Tanespimycin may also help cytarabine kill more cancer cells by making cancer cells more sensitive to the drug. Giving tanespimycin together with cytarabine may kill more cancer cells.
Radiolabeled Monoclonal Antibody Therapy, Fludarabine Phosphate, and Low-Dose Total-Body Irradiation...
Adult Acute Myeloid Leukemia in RemissionAdult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities15 moreThis phase I trial studies the side effects and best dose of iodine I 131 monoclonal antibody BC8 when given together with fludarabine phosphate and low-dose total-body irradiation followed by donor stem cell transplant and immunosuppression therapy in treating older patients with acute myeloid leukemia or high-risk myelodysplastic syndromes that cannot be controlled with treatment. Radiolabeled monoclonal antibodies, such as iodine I 131 monoclonal antibody BC8, can find cancer cells and carry cancer-killing substances to them. Giving chemotherapy, such as fludarabine phosphate, and total-body irradiation before a donor peripheral blood stem cell transplant helps stop the growth of cancer or abnormal cells. It may also stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. The donated stem cells may also replace the patient's immune cells and help destroy any remaining cancer cells. Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving radiolabeled monoclonal antibody therapy together with fludarabine phosphate and total-body irradiation before the transplant together with cyclosporine and mycophenolate mofetil after the transplant may stop this from happening.
Chemotherapy Plus Sargramostim in Treating Patients With Refractory Myeloid Cancer
Accelerated Phase Chronic Myelogenous LeukemiaAdult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities16 moreDrugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die. Colony-stimulating factors such as sargramostim may increase the number of immune cells found in bone marrow or peripheral blood and may help a person's immune system recover from the side effects of chemotherapy. Phase I trial to study the effectiveness of bryostatin 1 combined with sargramostim in treating patients who have refractory myeloid cancer