Samotolisib in Treating Patients With Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin...
Advanced Malignant Solid NeoplasmAnn Arbor Stage III Non-Hodgkin Lymphoma31 moreThis phase II Pediatric MATCH trial studies how well samotolisib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with TSC or PI3K/MTOR mutations that have spread to other places in the body (metastatic) and have come back (recurrent) or do not respond to treatment (refractory). Samotolisib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
Erdafitinib in Treating Patients With Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin...
Advanced Malignant Solid NeoplasmRecurrent Childhood Ependymoma30 moreThis phase II Pediatric MATCH trial studies how well erdafitinib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders that have spread to other places in the body and have come back or do not respond to treatment with FGFR mutations. Erdafitinib may stop the growth of cancer cells with FGFR mutations by blocking some of the enzymes needed for cell growth.
Fimepinostat in Treating Brain Tumors in Children and Young Adults
Diffuse Intrinsic Pontine GliomaRecurrent Anaplastic Astrocytoma3 moreThis trial studies how well fimepinostat works in treating patients with newly diagnosed diffuse intrinsic pontine glioma, or medulloblastoma, or high-grade glioma that have come back. Fimepinostat may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
Ulixertinib in Treating Patients With Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic...
Advanced Malignant Solid NeoplasmRecurrent Ependymal Tumor34 moreThis phase II Pediatric MATCH trial studies how well ulixertinib works in treating patients with solid tumors that have spread to other places in the body (advanced), non-Hodgkin lymphoma, or histiocytic disorders that have a genetic alteration (mutation) in a signaling pathway called MAPK. A signaling pathway consists of a group of molecules in a cell that control one or more cell functions. Genes in the MAPK pathway are frequently mutated in many types of cancers. Ulixertinib may stop the growth of cancer cells that have mutations in the MAPK pathway.
131I-Omburtamab, in Recurrent Medulloblastoma and Ependymoma
Recurrent MedulloblastomaRecurrent EpendymomaA Phase 2 study investigating the addition of cRIT 131I-omburtamab to irinotecan, temozolomide, and bevacizumab for patients with recurrent medulloblastoma. A feasibility cohort is included to assess the feasibility of incorporating cRIT 131I-omburtamab for patients with recurrent ependymoma. Direct intraventricular delivery of radiolabeled tumor-specific antibodies may aid in both the detection and treatment of recurrent disease for these highly specific pediatric patients with recurrent tumors.
PEP-CMV in Recurrent MEdulloblastoma/Malignant Glioma
Recurrent MedulloblastomaRecurrent Brain Tumor2 moreThe primary goal of this prospective clinical trial is to evaluate the safety of PEP-CMV in patients with recurrent medulloblastoma and malignant glioma. Patients with histologically-proven medulloblastoma or malignant glioma who had received prior therapy for their initial diagnosis and subsequently had tumor recurrence/progression may be enrolled any time after recurrence/progression regardless of prior adjuvant therapy. PEP-CMV is a vaccine comprised of Component A, a synthetic long peptide (SLP) of 26 amino acid residues from human pp65. In May 2021, enrollment on the study was temporarily suspended due to delays in vialing the PEP-CMV study vaccine.
Olaparib in Treating Patients With Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma,...
Advanced Malignant Solid NeoplasmAnn Arbor Stage III Childhood Non-Hodgkin Lymphoma34 moreThis phase II Pediatric MATCH trial studies how well olaparib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with defects in deoxyribonucleic acid (DNA) damage repair genes that have spread to other places in the body (advanced) and have come back (relapsed) or do not respond to treatment (refractory). Olaparib is an inhibitor of PARP, an enzyme that helps repair DNA when it becomes damaged. Blocking PARP may help keep cancer cells from repairing their damaged DNA, causing them to die. PARP inhibitors are a type of targeted therapy.
A Clinical and Molecular Risk-Directed Therapy for Newly Diagnosed Medulloblastoma
MedulloblastomaHistorically, medulloblastoma treatment has been determined by the amount of leftover disease present after surgery, also known as clinical risk (standard vs. high risk). Recent studies have shown that medulloblastoma is made up of distinct molecular subgroups which respond differently to treatment. This suggests that clinical risk alone is not adequate to identify actual risk of recurrence. In order to address this, we will stratify medulloblastoma treatment in this phase II clinical trial based on both clinical risk (low, standard, intermediate, or high risk) and molecular subtype (WNT, SHH, or Non-WNT Non-SHH). This stratified clinical and molecular treatment approach will be used to evaluate the following: To find out if participants with low-risk WNT tumors can be treated with a lower dose of radiation to the brain and spine, and a lower dose of the chemotherapy drug cyclophosphamide while still achieving the same survival rate as past St. Jude studies with fewer side effects. To find out if adding targeted chemotherapy after standard chemotherapy will benefit participants with SHH positive tumors. To find out if adding new chemotherapy agents to the standard chemotherapy will improve the outcome for intermediate and high risk Non-WNT Non-SHH tumors. To define the cure rate for standard risk Non-WNT Non-SHH tumors treated with reduced dose cyclophosphamide and compare this to participants from the past St. Jude study. All participants on this study will have surgery to remove as much of the primary tumor as safely possible, radiation therapy, and chemotherapy. The amount of radiation therapy and type of chemotherapy received will be determined by the participant's treatment stratum. Treatment stratum assignment will be based on the tumor's molecular subgroup assignment and clinical risk. The participant will be assigned to one of three medulloblastoma subgroups determined by analysis of the tumor tissue for tumor biomarkers: WNT (Strata W): positive for WNT biomarkers SHH (Strata S): positive for SHH biomarkers Non-WNT Non-SHH, Failed, or Indeterminate (Strata N): negative for WNT and SHH biomarkers or results are indeterminable Participants will then be assigned to a clinical risk group (low, standard, intermediate, or high) based on assessment of: How much tumor is left after surgery If the cancer has spread to other sites outside the brain [i.e., to the spinal cord or within the fluid surrounding the spinal cord, called cerebrospinal fluid (CSF)] The appearance of the tumor cells under the microscope Whether or not there are chromosomal abnormalities in the tumor, and if present, what type (also called cytogenetics analysis)
Proton Beam Radiotherapy for Medulloblastoma and Pineoblastoma
Brain TumorMedulloblastoma1 moreThere are two types of external radiation treatments (proton beam and photon beam). As part of the participant's treatment, they will receive radiation to the entire central nervous system (CNS); this is known as craniospinal irradiation (CSI). In the past, photon radiation therapy has been used for CSI. In this study we will be examining the effects of proton beam radiation therapy. Studies have suggested that this kind of radiation can cause less damage to normal tissue than photon radiation therapy. The physical characteristics of proton beam radiation let the doctor safely deliver the amount of radiation delivered to the tumor that is normally delivered through standard therapy but spare more normal tissue in the process.
Chemotherapy and Radiation Therapy in Treating Young Patients With Newly Diagnosed, Previously Untreated,...
Anaplastic MedulloblastomaMedulloblastomaThis randomized phase III trial studies different chemotherapy and radiation therapy regimens to compare how well they work in treating young patients with newly diagnosed, previously untreated, high-risk medulloblastoma. Drugs used in chemotherapy, such as vincristine sulfate, cisplatin, cyclophosphamide, and carboplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving more than one drug (combination chemotherapy) may kill more tumor cells. Radiation therapy uses high-energy x-rays to kill tumor cells. Carboplatin may make tumor cells more sensitive to radiation therapy. It is not yet known which chemotherapy and radiation therapy regimen is more effective in treating brain tumors.