search

Active clinical trials for "Movement Disorders"

Results 211-220 of 237

Compassionate Use of Tetrabenazine in the Treatment of Abnormal Movements

Hyperkinetic Movement Disorders

Although the results of studies looking at tetrabenazine have shown its effectiveness in the management of hyperkinetic(too much) movement disorders, it has not been made available in the U.S. The drug must be obtained from Cambridge Laboratories, the distributor, using an individual IND (#16,161). The cost of the drug is passed on to the patient. The purpose of the protocol is to provide an efficacious drug, with few side effects, in an attempt to get rid of a variety of incapacitating dyskinesias (abnormal movements).

No longer available5 enrollment criteria

Leveraging Machine Learning to Effortlessly Track Patient Movement in the Clinic.

Movement Disorders

The objective of this study is the development of a system that will allow for the precise measurement of movement kinematics in a clinical exam setting using natural video from three cameras and machine learning to track points of interest. The investigators aim to implement such system in an unobtrusive and simply-incorporated way into the physical exam to provide exact, objective measures to detect patient movement abnormalities in ways not feasible with current tracking technologies.

Completed6 enrollment criteria

Effect of Dual Task on Upper and Lower Extremity Skills in Parkinson's Disease

Parkinson DiseaseMovement Disorders

The aim of the study is to investigate the change of lower and upper extremity skills with dual task in Parkinson's disease patients and to determine the differences between Parkinson's disease patients with different stages of disease and the healthy controls regarding the change of lower and upper extremity skills with dual task.

Completed7 enrollment criteria

MRI Study of Brain Activity in Healthy Adults and Individuals With Parkinsonism and Rapid Eye Movement...

Movement Disorders (Incl Parkinsonism)Tremor Familial Essential2 more

This proposal is focused on developing a reliable, valid, and reproducible imaging techniques and statistical methodology for segregation of various forms of Parkinsonism from healthy adults without Parkinsonism.

Completed60 enrollment criteria

Mood and Subthalamic Nucleus (STN) Deep Brain Stimulation

Movement Disorders

The purpose of this research study is to investigate any changes seen in mood or behavior following deep brain stimulation for movement disorders.

Completed6 enrollment criteria

Changes in the Posterior Parietal Cortex - Primary Motor Cortex Pathway Induced by Motor Training...

Movement DisordersHeathly Subjects

Objective When learning to tap to a rhythm the brain has to coordinate information from different senses (eyes, ears, touch). This information has to be integrated into a movement plan to allow a smooth, continuous performance. Two brain areas that are of particular interest for this task are the posterior parietal cortex that integrates sensory and motor information and the primary motor cortex that sends out the movement commands to the muscles. These areas communicate via nerve connections with each other. The goal of this research proposal is to examine if the strength of the connection between those areas can be changed by practicing a simple tapping task and if the change in connection strength depends on if the rhythms were shown by visual or auditory stimuli. Additionally we will investigate how the ability to tap rhythms relates to other cognitive abilities like problem solving. Study Population We intend to study 20 adult healthy volunteers on an outpatient basis. Design In three experimental sessions we propose to use transcranial magnetic stimulation (TMS) and electro encephalography (EEG) to examine the role of the posterior parietal cortex in motor learning. In session 1 a neurological examination will be performed and a clinical and anatomical MRI (Magnet Resonance Image) will be taken. Session 1 can be skipped if an MRI and a neurological exam have been performed at the NIH during the last year. In session 2 TMS will be used to examine the connection between posterior parietal cortex and primary motor cortex before and after rhythm training. Additionally, EEG will be recorded during the training session. In session 3 we will examine how the ability to tap to different beats relates to higher cognitive functions. We will record EEG during tapping simple beats and we will administer a pen and paper problem-solving test. Outcome Measures In session 2 the primary outcome measure will be change in conditioned Motor Evoked Potential (MEP) peak-to-peak amplitude after learning temporal motor sequences measured in the primary motor cortex. A secondary outcome measure will be the interregional coherence changes as measured by EEG during training. In session 3 the primary outcome will be performance on the tapping task and on the pen and paper test as well as the interregional coherence changes as measured by EEG during the tapping task.

Completed14 enrollment criteria

Movement-Related Brain Networks Involved in Hand Dystonia

Movement DisorderFocal Dystonia

This study will use various methods to measure the activity of the motor cortex (the part of the brain that controls movements) in order to learn more about focal hand dystonia. Patients with dystonia have muscle spasms that cause uncontrolled twisting and repetitive movement or abnormal postures. In focal dystonia, just one part of the body, such as the hand, neck or face, is involved. Patients with focal hand dystonia and healthy normal volunteers between 18 and 65 years of age may be eligible for this study. Each candidate is screened with a medical history, physical examination and questionnaire. Participants undergo the following procedures: Finger Movement Tasks Subjects perform two finger movement tasks. In the first part of the study, they move their index finger repetitively from side to side at 10-second intervals for a total of 200 movements in four blocks of 50 at a time. In the second part of the study, subjects touch their thumb to the other four fingers in sequence from 1, 2, 3 and 4, while a metronome beats 2 times per second to help time the movements. This sequence is repeated for a total of 200 movements in four blocks of 50 at a time. Electroencephalography This test records brain waves. Electrodes (metal discs) are placed on the scalp with an electrode cap, a paste or a glue-like substance. The spaces between the electrodes and the scalp are filled with a gel that conducts electrical activity. Brain waves are recorded while the subject performs a finger movement task, as described above. Magnetoencephalography MEG records magnetic field changes produced by brain activity. During the test, the subjects are seated in the MEG recording room and a cone containing magnetic field detectors is lowered onto their head. The recording may be made while the subject performs a finger task. Electromyography Electromyography (EMG) measures the electrical activity of muscles. This study uses surface EMG, in which small metal disks filled with a conductive gel are taped to the skin on the finger. Magnetic resonance imaging MRI uses a magnetic field and radio waves to produce images of body tissues and organs. The patient lies on a table that can slide in and out of the scanner (a narrow metal cylinder), wearing earplugs to muffle loud knocking and thumping sounds that occur during the scanning. Most scans last between 45 and 90 minutes. Subjects may be asked to lie still for up to 30 minutes at a time, and can communicate with the MRI staff at all times during the procedure. Questionnaire This questionnaire is designed to detect any sources of discomfort the subject may have experienced during the study.

Completed6 enrollment criteria

Diagnosis and Natural History Study of Patients With Neurological Conditions

Alzheimer's DiseaseDementia3 more

The purpose of this study is to improve understanding of neurological conditions. Patients participating in this study will continue receiving medical care, routine laboratory tests, and diagnostics tests (X-rays, CT-scans, and nuclear imaging), from their primary care physician. Doctors at the NIH plan to follow these patients and offer advice and assistance to their primary care physicians.

Completed2 enrollment criteria

Magnetic Stimulation of the Human Nervous System

Demyelinating DiseaseHealthy3 more

Transcranial Magnetic Stimulation (TMS) is a non-invasive technique to gather information about brain function. It is very useful when studying the areas of the brain related to motor activity (motor cortex, corticospinal tract, spinal cord and nerve roots). The procedure is conducted by transmitting a magnetic signal into the brain to stimulate an area of the body. Electrodes (small pieces of metal taped to areas of the body) are used in order to measure electrical activity. A magnetic signal is sent from a metal instrument held close to the patient's head, to an area of the brain responsible for motor activity of a certain area of the body. The electrodes pick up and record the electrical activity in the muscles. This study will employ the use of TMS to diagnose neurological disorders that affect the motor cortex or the corticospinal tract. Normal subjects are sometimes studied to investigate normal activity of the nervous system and to train doctors in clinical neurophysiology and electrodiagnostic medicine at the National Institutes of Health (NIH).

Completed9 enrollment criteria

Magnetic Resonance Imaging Studies of Motor and Thought Processes

Cerebrovascular DisorderHealthy3 more

Magnetic resonance imaging (MRI) is a diagnostic tool that creates high quality images of the human body without the use of X-ray (radiation). MRI is especially useful when studying the brain, because it can provide information about certain brain functions. In addition, MRI is much better than standard X-rays at showing areas of the brain close to the skull and detecting changes in the brain associated with neurological diseases. In this study researchers will use MRI to gather information about the processes that control human movement and sensory processing. The purpose of the study is to investigate how the brain is activated when remembering, thinking, or recognizing objects. Researchers would like to determine what happens to brain functions when patients have trouble remembering, thinking, or recognizing objects following the start of disorders in the brain and nervous system. In addition, this study will investigate the processes of motor control in healthy volunteers and patients with disease.

Completed1 enrollment criteria
1...21222324

Need Help? Contact our team!


We'll reach out to this number within 24 hrs