Motion Sensor and Feedback System Efficacy to Refine Movements After Injury
Spinal Cord InjuriesStroke2 moreThe purpose of these case studies is to determine the efficacy of the Kinesthetic Awareness Training (KAT) device in facilitating the restoration of desired movement patterns when people with acquired central nervous system damage perform functional activities such as walking, transitioning from one position to another, or reaching with the arms.
Randomized, Double-Blind, Active Placebo-Controlled Study of Ketamine to Treat Levodopa-Induced...
DyskinesiasMovement Disorders3 moreA Multi-Center, Phase II, Randomized, Double-Blind, Prospective, Active Placebo-Controlled Trial of Sub-Anesthetic Intravenous Infusion of Ketamine to Treat Levodopa-Induced Dyskinesia in Subjects with Parkinson's Disease.
Natural History Protocol for Movement Disorders
Movement DisorderTremor1 moreBackground: A movement disorder is a condition that causes a person s body to move in ways that are not normal. There are different types. Some disorders cause movements people can t control, such as tics or shaking. Some cause reduced or slow movements. Movement disorders can cause disability in people. Sometimes members of the same family will have the same disorder. Researchers want to learn more about how people develop these disorders. This research could lead to better treatments. Objective: This natural history study will collect data on people with different types of movement disorders. It will also collect data on their family members. The data will support further research. Eligibility: Children and adults aged 2 years and older who have a movement disorder. Family members of people with movement disorders are also needed. Design: Participants will undergo screening. They will have a physical exam. Researchers will look at their existing medical images. Any photographs or videos of their movements will also be reviewed. Most participants will come to the NIH clinic for only 1 visit. They will answer questions about their condition. They will have normal tests used to diagnose their condition. They may have blood tests and different types of imaging scans. They may have tests to see how well their nerves function. The tests used will depend on the type of disorder they have. Family members will have some of the same tests as people with disorders. Participants will not receive any new treatments. Some participants may be asked to return for a follow-up visit. Up to 4000 people may participate.
Using Wearable and Mobile Data to Diagnose and Monitor Movement Disorders
Essential TremorParkinson Disease5 moreThe purpose of the research is to better understand the motor behavior of individuals in health and disease. The specific purpose of this project is to identify if we can utilize a smartphone to diagnose different movement disorders and monitor their symptoms. A. Objectives Estimate symptom severity of Essential tremor (ET), Parkinson's disease (PD), Huntington's disease (HD), Primary focal dystonia (PFD), spinocerebellar ataxia (SCA), and Functional movement disorders (FMD) using a smartphone-based application Differentiate individuals with the different movement disorders from healthy controls based on features from the smartphone data Differentiate individuals with a specific movement disorder from people with other movement disorders based on features from the smartphone data B. Hypotheses / Research Question(s) We hypothesize that we can estimate the severity of symptoms using a smartphone application and that, using those estimates, we can differentiate individuals with movement disorders from healthy controls and from people with other movement disorders.
Database Of Clinical Data For Individuals With Variants In The IRF2BPL Gene
Autism Spectrum DisorderMovement Disorders3 moreThis protocol serves as a data collection tool for individuals with variants (missense, nonsense, frameshifts) in the IRF2BPL gene (MIM 611720), which causes Neurodevelopmental Regression, Seizures, Autism and Developmental Delay (NEDAMSS, MIM 618088) and may be involved in other neurodevelopmental presentations. This information will be analyzed to develop a better understanding of the findings and progression of symptoms in individuals with variants in the IRF2BPL gene.
Genetic Characterization of Movement Disorders and Dementias
DementiaMovement DisorderBackground: There are two basic types of movement disorders. Some cause excessive movement, some cause slowness or lack of movement. Some of these are caused by mutations in genes. On the other hand, dementia is a condition of declining mental abilities, especially memory. Dementia can occur at any age but becomes more frequent with age. Researchers want to study the genes of families with a history of movement disorders or dementia. They hope to find a genetic cause of these disorders. This can help them better understand and treat the diseases. This study will not be limited to a particular disorder, but will study all movement disorders or dementias in general. This study will perform genetic testing to identify the genetic causes of movement disorders and dementia. Today, genetic testing can be done to analyze multiple genes at the same time. This increases the chances of finding the genetic cause of movement disorders and dementias. Objectives: To learn more about movement disorders and dementia, their causes, and treatments. Eligibility: Adults and children with a movement disorder or dementia, and their family members. Healthy volunteers. Design: Participants will be screened with medical history and blood tests. Some will have physical exam. Participants will give a blood sample by a needle in the arm. This can be done at the clinic, by their own doctor, or at home. Alternatively, a saliva sample may be provided if a blood sample cannot be obtained. Participants can opt to send an extra blood sample to a repository for future study. Genetic test will be done on these samples. The samples will be coded. The key to the code will remain at NIA. Only NIA investigators will have access to the code key. Participants can request to receive results of the tests. Participation is generally a single visit. Participants may be called back for extra
Hereditary Spastic Paraplegia Genomic Sequencing Initiative (HSPseq)
Hereditary Spastic ParaplegiaNeurodegenerative Diseases5 moreThe purpose of the HSP Sequencing Initiative is to better understand the role of genetics in hereditary spastic paraplegia (HSP) and related disorders. The HSPs are a group of more than 80 inherited neurological diseases that share the common feature of progressive spasticity. Collectively, the HSPs present the most common cause of inherited spasticity and associated disability, with a combined prevalence of 2-5 cases per 100,000 individuals worldwide. In childhood-onset forms, initial symptoms are often non-specific and many children may not receive a diagnosis until progressive features are recognized, often leading to a significant diagnostic delay. Genetic testing in children with spastic paraplegia is not yet standard practice. In this study, the investigators hope to identify genetic factors related to HSP. By identifying different genetic factors, the investigators hope that over time we can develop better treatments for sub-categories of HSP based on cause.
Handwriting Analysis in Movement Disorders
Movement DisordersParkinson Disease1 moreHandwriting is a complex cognitive prowess that deteriorates in patients affected by neurodegenerative diseases, including movement disorders. More in detail, patients with Parkinson's disease (PD) may manifest prominent handwriting abnormalities which have been collectively identified as parkinsonian micrographia. MIcrographia may manifest at the onset of the disease and then worsens progressively with time. Previous techniques released to investigate micrographia in PD relied on perceptual analysis of simple tasks or were based on expensive technological tools, including tablets. However, handwriting can be promptly collected in an ecological scenario, through safe, cheap, and largely available tools. Also, the objective handwriting analysis through artificial intelligence would represent an innovative strategy even superior to previous techniques, since it allows for the analysis of large amounts of data. In this experimental project, the investigators apply a specific machine learning algorithm to analyze handwriting samples recorded in healthy controls and PD patients. The study aims to verify whether the technique proposed by the investigators would be able to detect parkinsonian micrographia objectively, monitor the evolution of handwriting abnormalities and assess the symptomatic improvement of handwriting following L-Dopa administration in PD patients.
Movement Disorders in Multiple Sclerosis Patients
Multiple SclerosisMovement DisordersThe aim of this study is to determine the prevalence of movement disorders in MS patients. Also,To know the clinical type of movement disorders occurring with multiple sclerosis patients and the MRI finding of those patients. Moreover, to find the correlation between the movement disorder and the different types of MS.
Validating a New Machine-Learned Accelerometer Algorithm Using Doubly Labeled Water
Movement DisordersEnergy MetabolismThe purpose of this study is to validate previously developed physical function-clustered specific machine-learned accelerometer algorithms to estimate total daily energy expenditure (TDEE) in individuals with general movement and functional limitations.