search

Active clinical trials for "Leukemia, Myelogenous, Chronic, BCR-ABL Positive"

Results 661-670 of 939

Study of Farnesyl Protein Transferase Inhibitor (FPTI) in Patients With Leukemia (Study P00701)...

LeukemiaMyelodysplastic Syndromes6 more

The purpose of this study is to determine the safety and tolerability of an oral Farnesyl Protein Transferase Inhibitor (SCH 66336) as a single agent in patients with Advanced Myelodysplastic Syndrome, Acute Myelogenous Leukemia, Chronic Myelogenous Leukemia in Blast Crisis, or Acute Lymphoblastic Leukemia.

Completed8 enrollment criteria

Stem Cell Transplantation for Patients With Hematologic Malignancies

Acute Lymphoblastic LeukemiasAcute Myelocytic Leukemia6 more

Childhood leukemias which cannot be cured by chemotherapy alone may be effectively treated by allogeneic bone marrow transplantation. Moreover, for patients with chronic myelogenous leukemia (CML), allogeneic hematopoietic stem cell transplantation (HSCT) is the only proven curative modality of treatment. Patients who have received hematopoietic stem cells from an HLA matched sibling donor have proven to be less at risk for disease relapse and regimen related toxicity. However, about 70% of patients in need of HSCT do not have an HLA matched sibling donor. This necessitates the search for alternative donors, which may increase the risk of a poor outcome. The nature of the hematopoietic stem cell graft has been implicated as a primary factor determining these outcomes. The standard stem cell graft has been unmanipulated bone marrow, but recently several advantages of T-lymphocyte depleted bone marrow and mobilized peripheral blood progenitor cells (PBPC) have been demonstrated. However, T-cell depletion may increase the risk of infectious complications and leukemic recurrence while an unmanipulated stem cell graft may increase the risk of graft vs. host disease (GVHD). A key element in long range strategies in improving outcomes for patients undergoing matched unrelated donor (MUD) HSCT is to provide the optimal graft. The primary objective of this clinical trial is to estimate the incidence of acute GVHD in pediatric patients with hematologic malignancies who receive HSCT with an unmanipulated marrow graft. The results of this study can be used as the foundation for future trials related to engineering unrelated donor graft.

Completed20 enrollment criteria

An Extension Study to Determine the Safety and Anti-Leukemic Effects of Imatinib Mesylate in Adult...

Philadelphia Positive Chronic Myeloid LeukemiaAcute Lymphoblastic Leukemia1 more

The objectives of Part 1 of the study were: To determine the rate of hematologic response (HR) lasting ≥4 weeks in participants with Philadelphia chromosome-positive (Ph+) chronic myeloid leukemia (CML) in the accelerated phase (AP). To evaluate duration of HR, overall survival, cytogenetic response (CyR), time to blast crisis in CML participants in the AP, improvement of symptomatic parameters, tolerability and safety of STI571 treatment. The objective of the extension (Part 2) was: -To enable participants to have access to study drug and continue study treatment and to decrease data collection to include only overall survival and serious adverse events.

Completed13 enrollment criteria

Stem Cell Transplantation as Immunotherapy for Hematologic Malignancies

LeukemiaAcute Lymphoblastic Leukemia7 more

Blood and marrow stem cell transplant has improved the outcome for patients with high-risk hematologic malignancies. However, most patients do not have an appropriate HLA (immune type) matched sibling donor available and/or are unable to identify an acceptable unrelated HLA matched donor through the registries in a timely manner. Another option is haploidentical transplant using a partially matched family member donor. Although haploidentical transplant has proven curative in many patients, this procedure has been hindered by significant complications, primarily regimen-related toxicity including GVHD and infection due to delayed immune reconstitution. These can, in part, be due to certain white blood cells in the graft called T cells. GVHD happens when the donor T cells recognize the body tissues of the patient (the host) are different and attack these cells. Although too many T cells increase the possibility of GVHD, too few may cause the recipient's immune system to reconstitute slowly or the graft to fail to grow, leaving the patient at high-risk for significant infection. For these reasons, a primary focus for researchers is to engineer the graft to provide a T cell dose that will reduce the risk for GVHD, yet provide a sufficient number of cells to facilitate immune reconstitution and graft integrity. Building on prior institutional trials, this study will provide patients with a haploidentical graft engineered to specific T cell target values using the CliniMACS system. A reduced intensity, preparative regimen will be used in an effort to reduce regimen-related toxicity and mortality. Two groups of patients were enrolled on this study. One group included those with high-risk hematologic malignancies and the second group included participants with refractory hematologic malignancies or undergoing a second transplant. The primary aim of the study was to estimate the relapse rate in the one group of research participants with refractory hematologic malignancies or those undergoing second allogeneic transplant. Both groups will be followed and analyzed separately in regards to the secondary objectives. This study was closed to accrual on April 2006 as it met the specific safety stopping rules regarding occurrence of severe graft vs. host disease. Although this study is no longer open to accrual, the treated participants continue to be followed as directed by the protocol.

Completed29 enrollment criteria

Bortezomib in Treating Young Patients With Refractory or Recurrent Leukemia

Blastic Phase Chronic Myelogenous LeukemiaChildhood Acute Promyelocytic Leukemia (M3)2 more

This phase I trial is studying the side effects and best dose of bortezomib in treating young patients with refractory or recurrent leukemia. Bortezomib may stop the growth of cancer cells by blocking the enzymes necessary for their growth.

Completed50 enrollment criteria

Arsenic Trioxide and Imatinib Mesylate in Treating Patients With Accelerated Phase or Blastic Phase...

Leukemia

RATIONALE: Drugs used in chemotherapy, such as arsenic trioxide, work in different ways to stop cancer cells from dividing so they stop growing or die. Imatinib mesylate may stop the growth of cancer cells by blocking the enzymes necessary for their growth. Combining arsenic trioxide with imatinib mesylate may kill more cancer cells. PURPOSE: This phase I/II trial is studying the side effects and best dose of arsenic trioxide when given with imatinib mesylate and to see how well they work in treating patients with accelerated phase or blastic phase chronic myelogenous leukemia or Philadelphia chromosome-positive acute lymphoblastic leukemia.

Completed55 enrollment criteria

Donor Lymphocyte Infusion in Treating Patients With Persistent, Relapsed, or Progressing Cancer...

Blast Phase Chronic Myelogenous LeukemiaBCR-ABL1 Positive5 more

This phase I/II trial studies the side effects of donor lymphocyte infusion and to see how well it works in treating patients with persistent, relapsed (disease that has returned), or progressing cancer after donor hematopoietic cell transplantation. White blood cells from donors may be able to kill cancer cells in patients with cancer that has come back (recurrent) after a donor hematopoietic cell transplant.

Completed17 enrollment criteria

BMS-214662 in Treating Patients With Acute Leukemia, Myelodysplastic Syndrome, or Chronic Myeloid...

Adult Acute Promyelocytic Leukemia (M3)Blastic Phase Chronic Myelogenous Leukemia9 more

Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die. Phase I trial to study the effectiveness of BMS-214662 in treating patients who have acute leukemia, myelodysplastic syndrome, or chronic myeloid leukemia in blast phase

Completed17 enrollment criteria

BMS-354825 in Treating Patients With Chronic Phase Chronic Myelogenous Leukemia That Is Resistant...

Leukemia

RATIONALE: BMS-354825 may stop the growth of cancer cells by stopping the enzymes necessary for cancer cell growth. PURPOSE: This phase I trial is studying the side effects and best dose of BMS-354825 in treating patients with chronic phase chronic myelogenous leukemia that is resistant to imatinib mesylate.

Completed79 enrollment criteria

Study to Evaluate Nilotinib in Chronic Myelogenous Leukemia (CML) Patients With SubOptimal Response...

Philadelphia Chromosome PositiveChronic Myelogenous Leukemia in Chronic Phase

To evaluate the major molecular response (MMR) rate at 12 months of nilotinib treatment on study in patients with Philadelphia Chromosome Positive (Ph+) chronic myelogenous leukemia in chronic phase (CML-CP) who have a suboptimal molecular response to imatinib at 18 months or later.

Completed31 enrollment criteria
1...666768...94

Need Help? Contact our team!


We'll reach out to this number within 24 hrs