search

Active clinical trials for "Leukemia, Myelomonocytic, Chronic"

Results 161-170 of 293

Vorinostat and Decitabine in Treating Patients With Relapsed, Refractory, or Poor-Prognosis Hematologic...

Adult Acute Myeloid Leukemia With 11q23 (MLL) AbnormalitiesAdult Acute Myeloid Leukemia With Del(5q)12 more

This phase I trial is studying the side effects and best dose of vorinostat and decitabine in treating patients with relapsed, refractory, or poor-prognosis hematologic cancer or other diseases. Vorinostat may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as decitabine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving vorinostat together with decitabine may kill more cancer cells

Completed18 enrollment criteria

Mycophenolate Mofetil and Cyclosporine in Reducing Graft-Versus-Host Disease in Patients With Hematologic...

Accelerated Phase Chronic Myelogenous LeukemiaAdult Acute Lymphoblastic Leukemia in Remission134 more

This phase I/II trial studies whether stopping cyclosporine before mycophenolate mofetil is better at reducing the risk of life-threatening graft-versus-host disease (GVHD) than the previous approach where mycophenolate mofetil was stopped before cyclosporine. The other reason this study is being done because at the present time there are no curative therapies known outside of stem cell transplantation for these types of cancer. Because of age or underlying health status, patients may have a higher likelihood of experiencing harm from a conventional blood stem cell transplant. This study tests whether this new blood stem cell transplant method can be made safer by changing the order and length of time that immune suppressing drugs are given after transplant.

Completed42 enrollment criteria

Biological Therapy in Treating Patients With Advanced Myelodysplastic Syndrome, Acute or Chronic...

Adult Acute Myeloid Leukemia With 11q23 (MLL) AbnormalitiesAdult Acute Myeloid Leukemia With Inv(16)(p13;q22)21 more

This phase I/II trial is studying the side effects of biological therapy and to see how well it works in treating patients with advanced myelodysplastic syndrome, chronic myeloid leukemia, acute myeloid leukemia, or acute lymphoblastic leukemia. Biological therapies, including immunotherapy, can potentially be used to stimulate the immune system and stop cancer cells from growing. Immunotherapy given to patients who have undergone donor stem cell transplantation may be a way to eradicate remaining cancer cells

Completed34 enrollment criteria

Tipifarnib in Treating Patients With Myelodysplastic Syndromes

Chronic Myelomonocytic Leukemiade Novo Myelodysplastic Syndromes6 more

This phase I trial studies the side effects and best dose of tipifarnib in treating patients with myelodysplastic syndromes. Tipifarnib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.

Completed26 enrollment criteria

Decitabine and Cytarabine in Treating Older Patients With Newly Diagnosed Acute Myeloid Leukemia,...

Chronic Myelomonocytic Leukemia-2Myelodysplastic Syndrome2 more

This clinical trial studies decitabine and cytarabine in treating older patients with newly diagnosed acute myeloid leukemia, myelodysplastic syndrome that is likely to come back or spread to other places in the body, or myeloproliferative neoplasm. Drugs used in chemotherapy, such as decitabine and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving decitabine and cytarabine may work better than standard therapies in treating cancers of the bone marrow and blood cells, such as acute myeloid leukemia, myelodysplastic syndrome, or myeloproliferative neoplasm.

Completed6 enrollment criteria

Quizartinib With Azacitidine or Cytarabine in Treating Patients With Relapsed or Refractory Acute...

FLT3 Gene Mutation NegativeFLT3 Internal Tandem Duplication Positive6 more

This phase I/II trial studies the side effects and best dose of quizartinib when given in combination with azacitidine or cytarabine in treating patients with acute myeloid leukemia or myelodysplastic syndrome that have come back (relapsed) or are not responding to treatment (refractory). Quizartinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as azacitidine and cytarabine work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving quizartinib with azacitidine or cytarabine may work better in patients with acute myeloid leukemia or myelodysplastic syndrome.

Completed32 enrollment criteria

Erlotinib Hydrochloride in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia...

Acute Myeloid Leukemia Arising From Previous Myelodysplastic SyndromeAdult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH119 more

This pilot phase II trial studies how well erlotinib hydrochloride works in treating patients with relapsed or refractory acute myeloid leukemia. Erlotinib hydrochloride may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.

Completed13 enrollment criteria

Treatment for Relapsed/Refractory AML Based on a High Throughput Drug Sensitivity Assay

Adult Acute Megakaryoblastic Leukemia (M7)Adult Acute Minimally Differentiated Myeloid Leukemia (M0)18 more

This clinical trial uses a laboratory test called a high throughput sensitivity assay in planning treatment for patients with relapsed or refractory acute myeloid leukemia. The aim is to try to identify drugs that may be effective in killing leukemia cells for those patients who will not be cured with conventional chemotherapy. This assay will test multiple drugs simultaneously against a patient's own donated blood sample. The goal is to use this laboratory assay to best match a drug to a patient's disease.

Completed15 enrollment criteria

Umbilical Cord Blood Transplant With Added Sugar and Chemotherapy and Radiation Therapy in Treating...

Accelerated Phase Chronic Myelogenous LeukemiaBCR-ABL1 Positive22 more

This phase II trial studies how well an umbilical cord blood transplant with added sugar works with chemotherapy and radiation therapy in treating patients with leukemia or lymphoma. Giving chemotherapy and total-body irradiation before a donor umbilical cord blood transplant helps stop the growth of cells in the bone marrow, including normal blood-forming cells (stem cells) and cancer cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. The umbilical cord blood cells will be grown ("expanded") on a special layer of cells collected from the bone marrow of healthy volunteers in a laboratory. A type of sugar will also be added to the cells in the laboratory that may help the transplant to "take" faster.

Completed22 enrollment criteria

Study of ASTX727 vs IV Decitabine in MDS, CMML, and AML

Myelodysplastic SyndromesChronic Myelomonocytic Leukemia1 more

Multicenter, randomized, open-label, crossover PK study of ASTX727 versus IV decitabine. Adult subjects who are candidates to receive IV decitabine will be randomized 1:1 to receive the ASTX727 tablet Daily×5 in Cycle 1 followed by IV decitabine 20 mg/m^2 Daily×5 in Cycle 2, or the converse order. After completion of PK studies during the first 2 treatment cycles, subjects will continue to receive treatment with ASTX727 from Cycle 3 onward (in 28-day cycles) until disease progression, unacceptable toxicity, or the subject discontinues treatment or withdraws from the study.

Completed22 enrollment criteria
1...161718...30

Need Help? Contact our team!


We'll reach out to this number within 24 hrs