Phase I Dose-Escalation Trial of Clofarabine Followed by Escalating Doses of Fractionated Cyclophosphamide...
Myelodysplastic SyndromeAcute Myeloid Leukemia8 moreThis is a Phase I study designed to determine the MTD and assess the toxicity associated with clofarabine followed by fractionated cyclophosphamide in patients > 1 year of age or < 21 years of age with relapsed or refractory acute leukemias. There will be 25 to 35 patients enrolled. Cohorts of 3 to 6 patients each will receive escalated doses of clofarabine followed by fractionated cyclophosphamide until the MTD is reached. There will be no intra-patient dose escalation. Single-agent cyclophosphamide will be administered by 2-hour IVI on Day 0 of cycle 1. On Days 1, 2, and 3 and Days 8, 9, and 10 clofarabine will be administered by IVI 2 hours before each dose of cyclophosphamide (see the treatment schema below). A cycle is defined as 28 days.
Donor Stem Cell Transplant or Donor White Blood Cell Infusions in Treating Patients With Hematologic...
Chronic Myeloproliferative DisordersLeukemia5 moreRATIONALE: A peripheral stem cell transplant or an umbilical cord blood transplant from a donor may be able to replace blood-forming cells that were destroyed by chemotherapy or radiation therapy. Giving an infusion of the donor's white blood cells (donor lymphocyte infusion) after the transplant may help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells can make an immune response against the body's normal cells. Methotrexate, cyclosporine, tacrolimus, or methylprednisolone may stop this from happening. PURPOSE: This clinical trial is studying how well a donor stem cell transplant or donor white blood cell infusions work in treating patients with hematologic cancer.
Umbilical Cord Blood (UCB) Transplant, Fludarabine, Melphalan, and Anti-thymocyte Globulin (ATG)...
Myeloproliferative DisordersLeukemia3 moreRATIONALE: Giving low doses of chemotherapy before a donor umbilical cord blood transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving tacrolimus and mycophenolate mofetil after the transplant may stop this from happening. PURPOSE: This phase II trial is studying how well giving umbilical cord blood transplant together with fludarabine, melphalan, and antithymocyte globulin works in treating patients with hematologic cancer.
Donor Stem Cell Transplant in Treating Patients With High-Risk Hematologic Cancer
LeukemiaLymphoma2 moreRATIONALE: Giving low doses of chemotherapy before a donor stem cell transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving a monoclonal antibody, such as alemtuzumab, before transplant and tacrolimus and methotrexate after transplant may stop this from happening. PURPOSE: This phase II trial is studying the side effects of donor stem cell transplant and to see how well it works in treating patients with high-risk hematologic cancer.
Arsenic Trioxide in Treating Patients With Myelodysplastic Syndromes
LeukemiaMyelodysplastic Syndromes1 moreRATIONALE: Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die. PURPOSE: Phase II trial to study the effectiveness of arsenic trioxide in treating patients who have myelodysplastic syndromes.
A Study of TAS1553 in Subjects With Relapsed or Refractory Acute Myeloid Leukemia (AML) and Other...
Acute Myeloid LeukemiaMyeloproliferative Neoplasm1 moreThis is a Phase 1, 2-part, open-label, multicenter, first-in-human (FIH) study to assess the safety, pharmacokinetics (PK), pharmacodynamics (PD), and preliminary clinical activity of TAS1553 administered orally to participants ≥18 years of age with relapsed or refractory (R/R) acute myeloid leukemia (AML) or other myeloid neoplasms where approved therapies have failed or for whom known life-prolonging therapies are not available. The AML population includes de novo AML, secondary AML, and myelodysplastic syndrome (MDS)-transformed into AML. Other myeloid neoplasms include accelerated phase myeloproliferative neoplasms (MPN), and chronic or accelerated phase MPN-unclassifiable (MPN-U) and MDS-MPN. Blast crisis phase of MPNs are considered secondary AML and will be included in the AML cohort. Part 1 is a multicenter, sequential group treatment feasibility study with 1 treatment arm and no masking (dose escalation). Part 2 is a multicenter, two-stage, multiple group, dose confirmation study with 1 treatment arm and no masking (exploratory dose expansion).
G-CSF-Treated Donor Bone Marrow Transplant in Treating Patients With Hematologic Disorders
Chronic Myeloproliferative DisordersGraft Versus Host Disease6 moreRATIONALE: Giving chemotherapy drugs and total-body irradiation before a donor bone marrow transplant helps stop the growth of cancer and abnormal cells and helps stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Giving colony-stimulating factors, such as G-CSF, to the donor helps the stem cells move from the bone marrow to the blood so they can be collected and stored. PURPOSE: This clinical trial is studying how well a G-CSF-treated donor bone marrow transplant works in treating patients with hematologic cancer or noncancer.
Fludarabine, Cyclophosphamide, and Total-Body Irradiation Followed by Cyclosporine and Mycophenolate...
Chronic Myeloproliferative DisordersGraft Versus Host Disease5 moreRATIONALE: Giving low doses of chemotherapy, such as fludarabine and cyclophosphamide, and radiation therapy before a donor umbilical cord blood stem cell transplant helps stop the growth of cancer cells. It also stops the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune system and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving cyclosporine and mycophenolate mofetil after transplant may stop this from happening. PURPOSE: This clinical trial is studying how well giving fludarabine and cyclophosphamide together with total-body irradiation followed by cyclosporine and mycophenolate mofetil works in treating patients who are undergoing a donor umbilical cord blood transplant for hematologic cancer.
Alemtuzumab, Busulfan, and Cyclophosphamide Followed By a Donor Stem Cell Transplant in Treating...
Graft Versus Host DiseaseLeukemia2 moreRATIONALE: Monoclonal antibodies, such as alemtuzumab, can find cancer cells and either kill them or deliver cancer-killing substances to them without harming normal cells. Giving chemotherapy drugs, such as busulfan and cyclophosphamide, before a donor stem cell transplant helps stop the growth of cancer cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Giving tacrolimus and methotrexate after the transplant may stop this from happening. PURPOSE: This phase I/II trial is studying the best dose of alemtuzumab when given together with busulfan and cyclophosphamide followed by a donor stem cell transplant and to see how well it works in treating patients with hematologic cancer.
Total-Body Irradiation, Fludarabine, and Alemtuzumab Followed By Stem Cell Transplant in Treating...
Chronic Myeloproliferative DisordersLeukemia1 morePatients are being asked to participate in this study because they have a malignant blood disease such as Myelodysplastic Syndrome (MDS), Myeloproliferative Disorder (MPD), Acute Myelogenous Leukemia (AML) or Chronic Myelogenous Leukemia (CML). We feel that patients could benefit from an allogeneic (meaning the cells come from a donor other than themself) stem cell transplant. The donor would be a family member or an unrelated person that is felt to be a good match for the patient. Stem cells are cells that are made in the bone marrow (spongy material that fills the middle of the bones). As the stem cells grow, they change into different types of blood cells that they need. This includes red blood cells that carry oxygen around the body, white blood cells that help to fight infections, and platelets that help to prevent and stop bleeding. Usually, patients are given high doses of chemotherapy before a stem cell transplant. High doses of chemo destroy the bone marrow. Healthy stem cells from a donor are then given to replace the patient's unhealthy cells. However, because of complications with the patient's disease, they have a high risk of having life-threatening side effects. These include serious damage to organs such as the lung, liver, kidney and heart. There is also an increased risk of bacterial, fungal, and viral infections. The other major problem is when a donor's stem cells (also called the graft) find that the patient's cells ( the host cells) are not the same. The donor cells may try to destroy the host's cells. The cells at high risk are those of the skin, liver and intestines. This is called graft versus host disease (GVHD) and it can be fatal. Recently, doctors have been able to use less toxic chemotherapy treatments before patients receive their transplants. This less toxic treatment helps reduce some of the treatment related problems mentioned above. Patient's are being asked to be involved in a research study that uses this approach. One major risk of this low dose treatment is that the patient's body may reject the donor cells. This is called graft rejection. This study is designed to see if this low dose treatment is safe and effective. This treatment plan adds CAMPATH 1H (a special protein called an antibody) to a low dose chemotherapy regimen. After chemo, the patient will receive an allogeneic (cells come from a donor) stem cell transplant. Adding CAMPATH 1H to the transplant medicines may help in treating the disease. CAMPATH 1H may reduce life-threatening and treatment related side effects like GVHD. CAMPATH 1H stays active in the body for a long time which means it may work longer to prevent GVHD. CAMPATH 1H destroys lymphocytes, a type of white cells that help fight infection, and this helps prevent graft rejection. We want to see if the addition of CAMPATH 1H to the patient's pre-transplant low dose chemotherapy will decrease the side effects from an allogeneic stem cell transplant, while providing a curative treatment for patients with blood disorders.