Response-Based Chemotherapy in Treating Newly Diagnosed Acute Myeloid Leukemia or Myelodysplastic...
Acute Myeloid LeukemiaDown Syndrome3 moreThis phase III trial studies response-based chemotherapy in treating newly diagnosed acute myeloid leukemia or myelodysplastic syndrome in younger patients with Down syndrome. Drugs used in chemotherapy work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Response-based chemotherapy separates patients into different risk groups and treats them according to how they respond to the first course of treatment (Induction I). Response-based treatment may be effective in treating acute myeloid leukemia or myelodysplastic syndrome in younger patients with Down syndrome while reducing the side effects.
Pevonedistat and Azacitidine in MDS or MDS/MPN Patients Who Fail Primary Therapy With DNA Methyl...
Myelodysplastic SyndromesMyeloproliferative NeoplasmThis study will evaluate the treatment combination of pevonedistat and azacitidine in the setting of DNA methyltransferase inhibitor(s) failure in patients with relapsed/refractory myelodysplastic syndrome or myelodysplastic syndrome/myeloproliferative neoplasm.
Fludarabine Phosphate, Cyclophosphamide, Total Body Irradiation, and Donor Stem Cell Transplant...
Accelerated Phase Chronic Myelogenous LeukemiaBCR-ABL1 Positive38 moreThis phase II trial studies how well fludarabine phosphate, cyclophosphamide, total body irradiation, and donor stem cell transplant work in treating patients with blood cancer. Drugs used in chemotherapy, such as fludarabine phosphate and cyclophosphamide, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high energy x-rays to kill cancer cells and shrink tumors. Giving chemotherapy and total-body irradiation before a donor peripheral blood stem cell transplant helps stop the growth of cells in the bone marrow, including normal blood-forming cells (stem cells) and cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. The donated stem cells may also replace the patient?s immune cells and help destroy any remaining cancer cells.
Tocilizumab for the Prevention of Graft Versus Host Disease After Cord Blood Transplantation
Acute Myeloid LeukemiaAcute Lymphoblastic Leukemia7 moreThe aim of the research in this study is to make participants' transplant safer by reducing the risk of developing GVHD and GVHD-related complications by giving participants a dose of the drug tocilizumab in addition to the standard approach for GVHD prevention. Tocilizumab reduces the risk of inflammation by blocking the effect of Interleukin-6, a protein that exists in high levels in the blood when there is inflammation. Participants who receive stem cell transplants have high levels of this protein in their blood early after transplant. Therefore, the goal of this study is to reduce the risk of inflammation after transplant with the addition of Tocilizumab. This could decrease the risk of developing GVHD and GVHD-associated complications.
A Study Evaluating Safety and Tolerability, and Pharmacokinetics of Navitoclax Monotherapy and in...
Myeloproliferative NeoplasmThere are 5 parts to this study for which the primary objectives are to evaluate safety, tolerability, and pharmacokinetics (PK) of navitoclax when administered alone (Part 1) or when administered in combination with ruxolitinib (Part 2). In Part 2, participants must have been receiving a stable dose of ruxolitinib therapy for at least 12 weeks prior to study enrollment. In Part 3, all eligible participants will receive navitoclax, with the primary objective being to evaluate potential navitoclax effect on QTc prolongation. In Part 4, effect of navitoclax is evaluated on the PK, safety, and tolerability of a single dose of celecoxib. In Part 5, all eligible participants will receive ruxolitinib twice daily and navitoclax once daily for drug-drug interaction (DDI) assessment, followed by continued administration of navitoclax in combination with ruxolitinib.
A Phase 1 Trial of CIML NK Cell Infusion for Myeloid Disease Relapse After Hematopoietic Cell Transplantation...
Acute Myeloid LeukemiaMyelodysplastic Syndromes2 moreThis research study is studying cytokine induced memory-like natural killer (CIML NK) cells combined with IL-2 in adult patients (18 years of age or older) with Acute Myeloid Leukemia (AML), Myelodysplastic Syndrome (MDS) and Myeloproliferative Neoplasms (MPN) who relapse after haploidentical hematopoietic cell transplantation (haplo-HCT) or HLA matched stem cells. This study will also study CIML NK cell infusion combined with IL-2 in pediatric patients (12 years of age or older) with AML, MDS, JMML who relapse after stem cell transplantation using HLA-matched related donor or related donor haploidentical stem cells.
A Study of LY2784544 in Participants With Myeloproliferative Neoplasms
NeoplasmsHematologicThe primary purpose of this study is to measure the response rate in participants with the myeloproliferative neoplasms (MPNs), polycythemia vera (PV), essential thrombocythemia (ET), or myelofibrosis (MF) when treated with LY2784544, including those who have demonstrated an intolerance to, failure of primary response to, or have demonstrated disease progression while on ruxolitinib.
Veliparib and Topotecan With or Without Carboplatin in Treating Patients With Relapsed or Refractory...
Adult Acute Megakaryoblastic LeukemiaAdult Acute Monoblastic Leukemia23 moreThis phase I trial is studying the side effects and best dose of veliparib when given together with topotecan hydrochloride with or without carboplatin in treating patients with relapsed or refractory acute leukemia, high-risk myelodysplasia, or aggressive myeloproliferative disorders. Veliparib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as topotecan hydrochloride and carboplatin, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving veliparib together with topotecan hydrochloride and carboplatin may kill more cancer cells.
Azacitidine, Venetoclax, and Pevonedistat in Treating Patients With Newly Diagnosed Acute Myeloid...
Acute Myeloid LeukemiaAtypical Chronic Myeloid Leukemia19 moreThis phase I/II trial studies the best dose of venetoclax when given together with azacitidine and pevonedistat and to see how well it works in treating patients with newly diagnosed acute myeloid leukemia. Drugs used in chemotherapy, such as azacitidine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Venetoclax may stop the growth of cancer cells by blocking Bcl-2, a protein needed for cancer cell survival. Pevonedistat may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving azacitidine, venetoclax, and pevonedistat may work better in treating patients with acute myeloid leukemia.
Busulfan, Fludarabine Phosphate, and Post-Transplant Cyclophosphamide in Treating Patients With...
Hematopoietic and Lymphoid Cell NeoplasmHigh Risk Acute Myeloid Leukemia13 moreThis phase II trial studies the side effect of busulfan, fludarabine phosphate, and post-transplant cyclophosphamide in treating patients with blood cancer undergoing donor stem cell transplant. Drugs used in chemotherapy, such as busulfan, fludarabine phosphate and cyclophosphamide work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving chemotherapy such as busulfan and fludarabine phosphate before a donor stem cell transplant helps stop the growth of cells in the bone marrow, including normal blood-forming cells (stem cells) and cancer cells. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells (called graft-versus-host disease). Giving cyclophosphamide after the transplant may stop this from happening. Once the donated stem cells begin working, the patient's immune system may see the remaining cancer cells as not belonging in the patient's body and destroy them.