search

Active clinical trials for "Neuroblastoma"

Results 41-50 of 555

Pediatric Precision Laboratory Advanced Neuroblastoma Therapy

Neuroblastoma

A prospective open label, multicenter study to evaluate the feasibility and acute toxicity of using molecularly guided therapy in combination with standard therapy followed by a Randomized Controlled Trial of standard immunotherapy with or without DFMO followed by DFMO maintenance for Subjects with Newly Diagnosed High-Risk Neuroblastoma.

Recruiting32 enrollment criteria

Study of CAR T-Cells Targeting the GD2 With IL-15+iCaspase9 for Relapsed/Refractory Neuroblastoma...

NeuroblastomaOsteosarcoma

The body has different ways of fighting infections and disease. No single way seems perfect for fighting cancer. This research study combines two different ways of fighting disease: antibodies and T cells. Antibodies are molecules that fight infections and protect your body from diseases caused by bacteria and toxic substances. Antibodies work by sticking to those bacteria or substances, which stops them from growing and causing bad effects. T cells are special infection-fighting blood cells that can kill other cells, including tumor cells or cells that are infected. Both antibodies and T cells have been used to treat patients with cancers. They both have shown promise, but neither alone has been enough to cure most patients. This multicenter study is designed to combine both T cells and antibodies in order to create a more effective treatment. The treatment that is being researched is called autologous T lymphocyte chimeric antigen receptor cells (CAR) cells targeted against the disialoganglioside (GD2) antigen that express Interleukin (IL)-15, and the inducible caspase 9 safety switch (iC9), also known as iC9.GD2.CAR.IL-15 T cells.

Recruiting18 enrollment criteria

Larotrectinib in Treating Patients With Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin...

Advanced Malignant Solid NeoplasmRecurrent Ependymoma31 more

This phase II Pediatric MATCH trial studies how well larotrectinib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with NTRK fusions that may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced) and have come back (relapased) or does not respond to treatment (refractory). Larotrectinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.

Recruiting53 enrollment criteria

GD2 Specific CAR and Interleukin-15 Expressing Autologous NKT Cells to Treat Children With Neuroblastoma...

Neuroblastoma

This research study combines two different ways of fighting cancer: antibodies and Natural Killer T cells (NKT). Antibodies are types of proteins that protect the body from infectious diseases and possibly cancer. T cells, also called T lymphocytes, are special white blood cells that can kill other cells, including cells infected with viruses and tumor cells. Both antibodies and T cells have been used to treat patients with cancers. Investigators have found from previous research that they can put a new gene into T cells that will make them recognize cancer cells and kill them. In a previous clinical trial, investigators made artificial genes called a chimeric antigen receptors (CAR), from an antibody called 14g2a that recognizes GD2, a molecule found on almost all neuroblastoma cells (GD2-CAR). Investigators put these genes into the patients' own T cells and gave them back to patients that had neuroblastoma. NKT cells are another special subgroup of white blood cells that can specifically go into tumor tissue of neuroblastoma. Inside the tumor, there are other white blood cells called macrophages which help the cancer cells to grow and recover from injury. NKT cells can specifically kill these macrophages and slow the tumor growth. We will expand NKT cells and add GD2-specific chimeric antigen receptors to the cells. We think these cells might be better able to attack NB since they also work by destroying the macrophages that allows the tumor to grow. The chimeric antigen receptor will also contain a gene segment to make the NKT cells last longer. This gene segment is called CD28. In addition, to further improve the antitumor activity of the GINAKIT cells we added another gene expressing a molecule called Interleukin -15 (IL-15). The combination of these 3 components showed the most antitumor activity by CAR expressing NKT cells and improved these cells' survival in animal models. GD2-CAR expressing NKTs have not been tested in patients so far. The purpose of this study is to find the largest effective and safe dose of GD2-CAR NKT cells (GINAKIT cells), to evaluate their effect on the tumor and how long they can be detected in the patient's blood and what affect they have on the patient's neuroblastoma.

Recruiting50 enrollment criteria

C7R-GD2.CART Cells for Patients With Relapsed or Refractory Neuroblastoma and Other GD2 Positive...

Relapsed NeuroblastomaRefractory Neuroblastoma5 more

This study is for patients with neuroblastoma, sarcoma, uveal melanoma, breast cancer, or another cancer that expresses a substance on the cancer cells called GD2. The cancer has either come back after treatment or did not respond to treatment. Because there is no standard treatment at this time, patients are asked to volunteer in a gene transfer research study using special immune cells called T cells. T cells are a type of white blood cell that helps the body fight infection. The body has different ways of fighting infection and disease. No single way seems perfect for fighting cancers. This research study combines two different ways of fighting cancer: antibodies and T cells. Both antibodies and T cells have been used to treat patients with cancers. They have shown promise but have not been strong enough to cure most patients. We have found from previous research that we can put a new gene into T cells that will make them recognize cancer cells and kill them. In our last clinical trial we made a gene called a chimeric antigen receptor (CAR) from an antibody that recognizes GD2, a substance found on almost all neuroblastoma cells (GD2-CAR). We put this gene into the patients' own T cells and gave them back to 11 neuroblastoma patients. We saw that the cells did grow for a while, but started to disappear from the blood after 2 weeks. We think that if T cells are able to last longer they may have a better chance of killing GD2 positive tumor cells. Therefore, in this study we will add a new gene to the GD2 T cells that can cause the cells to live longer. T cells need substances called cytokines to survive and the cells may not get enough cytokines after infusion. We have added the gene C7R that gives the cells a constant supply of cytokine and helps them to survive for a longer period of time. In other studies using T cells, investigators found that giving chemotherapy before the T cell infusion can improve the amount of time the T cells stay in the body and therefore the effect the T cells can have. This is called lymphodepletion and we think that it will allow the T cells to expand and stay longer in the body, and potentially kill cancer cells more effectively. The GD2-C7R T cells are an investigational product not approved by the Food and Drug Administration. The purpose of this study is to find the largest safe dose of GD2-C7R T cells, and also to evaluate how long they can be detected in the blood and what affect they have on cancer.

Recruiting49 enrollment criteria

A Study of Abemaciclib (LY2835219) in Combination With Other Anti-Cancer Treatments in Children...

Relapsed Solid TumorRefractory Solid Tumor

The study's purpose is to see if the drug, abemaciclib, is safe and effective when given with other drugs to kill cancer cells. The study is open to children and young adults with solid tumors, including neuroblastoma, that did not respond or grew during other anti-cancer treatment. For each participant, the study is estimated to last up to 2 years.

Recruiting33 enrollment criteria

Ivosidenib in Treating Patients With Advanced Solid Tumors, Lymphoma, or Histiocytic Disorders With...

Recurrent EpendymomaRecurrent Ewing Sarcoma31 more

This phase II Pediatric MATCH trial studies how well ivosidenib works in treating patients with solid tumors that have spread to other places in the body (advanced), lymphoma, or histiocytic disorders that have IDH1 genetic alterations (mutations). Ivosidenib may block the growth of cancer cells that have specific genetic changes in an important signaling pathway called the IDH pathway.

Recruiting57 enrollment criteria

67Cu-SARTATE™ Peptide Receptor Radionuclide Therapy Administered to Pediatric Patients With High-Risk,...

NeuroblastomaRelapsed Neuroblastoma1 more

The aim of this study is to evaluate the safety and efficacy of 67Cu-SARTATE in pediatric patients with high-risk neuroblastoma.

Recruiting27 enrollment criteria

DNA Vaccination Against Neuroblastoma

Relapsed Neuroblastoma

This is pilot open-label study to evaluate the safety and immunogenicity of a DNA vaccine strategy in relapsed neuroblastoma patients following chemotherapy and HSC transplantation. The combined form of the vaccine includes an intramuscular injection of the DNA-polyethylenimine conjugate and oral administration using the attenuated Salmonella enterica as DNA vaccine carriers. Objectives of the study: To assess safety and document local and systemic toxicity to combined DNA vaccine To determine immunogenicity of the vaccine To evaluate clinical response to vaccination. Control of minimal residual disease in bone marrow and duration of remission.

Recruiting20 enrollment criteria

Study Of Palbociclib Combined With Chemotherapy In Pediatric Patients With Recurrent/Refractory...

Ewing SarcomaSolid Tumors5 more

A study to learn about safety and find out maximum tolerable dose of palbociclib given in combination with chemotherapy (temozolomide with irinotecan or topotecan with cyclophosphamide) in children, adolescents and young adults with recurrent or refractory solid tumors (phase 1). Neuroblastoma tumor specific cohort to further evaluate antitumor activity of palbociclib in combination with topotecan and cyclophosphamide in children, adolescents, and young adults with recurrent or refractory neuroblastoma. Phase 2 to learn about the efficacy of palbociclib in combination with irinotecan and temozolomide when compared with irinotecan and temozolomide alone in the treatment of children, adolescents, and young adults with recurrent or refractory Ewing sarcoma (EWS).

Recruiting52 enrollment criteria
1...456...56

Need Help? Contact our team!


We'll reach out to this number within 24 hrs