search

Active clinical trials for "Neuroectodermal Tumors, Primitive"

Results 91-100 of 142

Positron Emission Tomography Using Fluorine F 18 EF5 to Find Oxygen in Tumor Cells of Patients Who...

Adult Anaplastic AstrocytomaAdult Anaplastic Ependymoma25 more

This phase I trial is studying the side effects of fluorine F18 EF5 when given during positron emission tomography to find oxygen in tumor cells of patients who are undergoing surgery or biopsy for newly diagnosed brain tumors. Diagnostic procedures using fluorine F 18 EF5 and positron emission tomography to detect tumor hypoxia may help in planning cancer treatment

Terminated21 enrollment criteria

Tipifarnib in Treating Young Patients With Recurrent or Progressive High-Grade Glioma, Medulloblastoma,...

Childhood High-grade Cerebral AstrocytomaChildhood Oligodendroglioma6 more

This phase II trial is studying how well tipifarnib works in treating young patients with recurrent or progressive high-grade glioma, medulloblastoma, primitive neuroectodermal tumor, or brain stem glioma. Tipifarnib may stop the growth of tumor cells by blocking the enzymes necessary for their growth.

Completed129 enrollment criteria

Imatinib Mesylate in Treating Patients With Relapsed or Refractory Solid Tumors of Childhood

Childhood Desmoplastic Small Round Cell TumorChildhood Synovial Sarcoma6 more

Phase II trial to study the effectiveness of imatinib mesylate in treating patients who have relapsed or refractory solid tumors of childhood. Imatinib mesylate may stop the growth of tumor cells by blocking the enzymes necessary for their growth.

Completed50 enrollment criteria

Antineoplaston Therapy in Treating Children With Primitive Neuroectodermal Tumors

Childhood CNS Primitive Neuroectodermal Tumor

RATIONALE: Current therapies for children with primitive neuroectodermal tumors that have not responded to standard therapy provide very limited benefit to the patient. The anti-cancer properties of Antineoplaston therapy suggest that it may prove beneficial in the treatment of children with primitive neuroectodermal tumors that have not responded to standard therapy. PURPOSE: This study is being performed to determine the effects (good and bad) that Antineoplaston therapy has on children (> 6 months of age) with primitive neuroectodermal tumors that has not responded to standard therapy.

Completed49 enrollment criteria

Trial of Afatinib in Pediatric Tumours

Neuroectodermal TumorsRhabdomyosarcoma

Open-label, dose escalation, monotherapy, basket trial with biomarker specific MTD expansion cohort/Phase II part. The trial will consist of 2 parts: Dose finding part to determine the MTD Biomarker specific MTD expansion cohort/Phase II part to assess clinical anti-tumour activity in included tumour types

Completed9 enrollment criteria

p28 in Treating Younger Patients With Recurrent or Progressive Central Nervous System Tumors

Teratoid TumorAtypical10 more

This phase I trial studies the side effects and best dose of azurin-derived cell-penetrating peptide p28 (p28) in treating patients with recurrent or progressive central nervous system tumors. Drugs used in chemotherapy, such as azurin-derived cell-penetrating peptide p28, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing.

Completed31 enrollment criteria

Concurrent Carboplatin and Reduced Dose Craniospinal Radiation for Medulloblastoma and Primitive...

Metastatic MedulloblastomaHigh Risk Supratentorial PNET1 more

The purpose of this study is to study the efficacy of the combination of reduced dose craniospinal radiation (reduced from standard of care dosing at 36 Gy to 24 Gy) with concurrent carboplatin and vincristine administration for metastatic classical histology medulloblastomas and high-risk supratentorial PNETs and metastatic PNETs.

Completed8 enrollment criteria

Phase I Study of Cellular Immunotherapy for Recurrent/Refractory Malignant Glioma Using Intratumoral...

Anaplastic AstrocytomaAnaplastic Ependymoma12 more

RATIONALE: Biological therapies, such as cellular adoptive immunotherapy, may stimulate the immune system in different ways and stop tumor cells from growing. Donor T cells that are treated in the laboratory may be effective treatment for malignant glioma. Aldesleukin may stimulate the white blood cells to kill tumor cells. Combining different types of biological therapies may kill more tumor cells. PURPOSE: This phase I trial is studying the side effects and best way to give therapeutic donor lymphocytes together with aldesleukin in treating patients with stage III or stage IV malignant glioma.

Completed27 enrollment criteria

RO4929097, Temozolomide, and Radiation Therapy in Treating Patients With Newly Diagnosed Malignant...

Acoustic SchwannomaAdult Anaplastic (Malignant) Meningioma27 more

This phase I trial studies the side effects and best dose of gamma-secretase/Notch signalling pathway inhibitor RO4929097 (RO4929097) when given together with temozolomide and radiation therapy in treating patients with newly diagnosed malignant glioma. Enzyme inhibitors, such as gamma-secretase/Notch signalling pathway inhibitor RO4929097, may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high-energy x-rays to kill tumor cells. Giving gamma-secretase/Notch signalling pathway inhibitor RO4929097 together with temozolomide and radiation therapy may kill more tumor cells.

Completed45 enrollment criteria

A Five-Tier, Open-Label Study of IMC-A12 in Advanced Sarcoma

Ewing's Sarcoma /Peripheral Neuroectodermal Tumor (PNET)Rhabdomyosarcoma3 more

This multicenter study will enroll approximately 185 participants with metastatic or advanced sarcoma, to assess the effectiveness and safety of IMC-A12 monotherapy for this indication. Participants will be stratified into five tiers according to diagnosis: Ewing's sarcoma/peripheral neuroectodermal tumor (PNET) rhabdomyosarcoma leiomyosarcoma adipocytic sarcoma synovial sarcoma. A total of 85 participants will be enrolled initially, 17 in each tier. Participants will receive single agent IMC-A12 every 2 weeks. A treatment cycle will be defined as 6 weeks, with radiological evaluation at every cycle. Safety and response in the initial 17 participants in each tier will be used to determine whether to extend enrollment to the target total of 37 participants per tier.

Completed23 enrollment criteria
1...91011...15

Need Help? Contact our team!


We'll reach out to this number within 24 hrs