search

Active clinical trials for "Severe Combined Immunodeficiency"

Results 21-30 of 69

Strimvelis Registry Study to Follow-up Patients With Adenosine Deaminase Severe Combined Immunodeficiency...

Immunologic Deficiency Syndromes

Adenosine deaminase (ADA) enzyme deficiency results in severe combined immunodeficiency (SCID), a fatal autosomal recessive inherited immune disorder. Strimvelis (or GSK2696273) is a gene therapy intended for patients with ADA-SCID and for whom no suitable human leukocyte antigen (HLA) matched related stem cell donor is available. This therapy aims to restore ADA function in hematopoietic cell lineages, and in doing so prevents the pathology caused by purine metabolites (i.e., impaired immune function). This registry will evaluate the long term safety and effectiveness outcomes of subjects who have received Strimvelis (or GSK2696273).

Enrolling by invitation2 enrollment criteria

Gene Transfer for X-Linked Severe Combined Immunodeficiency in Newly Diagnosed Infants

Severe Combined Immunodeficiency DiseaseX-linked

SCID-X1 is a genetic disorder of blood cells caused by DNA changes in a gene that is required for the normal development of the human immune system. The purpose of this study is to determine if a new method, called lentiviral gene transfer, can be used to treat SCID-X1. This method involves transferring a normal copy of the common gamma chain gene into the participant's bone marrow stem cells. The investigators want to determine if the procedure is safe, whether it can be done according to the methods they have developed, and whether the procedure will provide a normal immune system for the patient. It is hoped that this type of gene transfer may offer a new way to treat children with SCID-X1 that do not have a brother or sister who can be used as a donor for stem cell transplantation.

Suspended15 enrollment criteria

An Observational LTFU Study for Patients Previously Treated With Autologous ex Vivo Gene Therapy...

Adenosine Deaminase DeficiencySevere Combined Immunodeficiency (SCID)

This observational long-term follow-up study is designed to collect safety and efficacy data from ADA-SCID patients previously treated with autologous ex vivo gene therapy products based on the EFS-ADA LV encoding for human adenosine deaminase (ADA) gene (EFS-ADA LV), as part of the OTL-101 clinical development program. No investigational medicinal product will be administered to these patients as part of the OTL-101-6 study.

Enrolling by invitation5 enrollment criteria

Natural History Study of SCID Disorders

Severe Combined Immunodeficiency (SCID)Leaky SCID4 more

This study is a prospective evaluation of children with Severe Combined Immune Deficiency (SCID) who are treated under a variety of protocols used by participating institutions. In order to determine the patient, recipient and transplant-related variables that are most important in determining outcome, study investigators will uniformly collect pre-, post- and peri-transplant (or other treatment) information on all children enrolled into this study. Children will be divided into three strata: Stratum A: Typical SCID with virtual absence of autologous T cells and poor T cell function Stratum B: Atypical SCID (leaky SCID, Omenn syndrome and reticular dysgenesis with limited T cell diversity or number and reduced function), and Stratum C: ADA deficient SCID and XSCID patients receiving alternative therapy including PEG-ADA ERT or gene therapy. Each Group/Cohort Stratum will be analyzed separately.

Enrolling by invitation63 enrollment criteria

Lentiviral Gene Transfer for Treatment of Children Older Than Two Years of Age With X-Linked Severe...

X-linked Severe Combined Immunodeficiency (XSCID)

This is a non-randomized clinical trial of gene transfer using a self-inactivating, insulated, lentiviral gene transfer vector to treat 23 patients with X-linked severe combined immunodeficiency (XSCID, also called SCID-X1) who are between 2 and 40 years of age; who do not have a tissue matched sibling who can donate bone marrow for a transplant; who may have failed to obtain sufficient benefit from a previous half-tissue matched bone marrow transplant; and who have clinically significant impairment of immunity. A patient s own precursor cells (also called blood stem cells) that give rise in the marrow to blood and immune cells will have been or will be collected from the patient s blood or bone marrow. A patient will not proceed to gene transfer treatment in this protocol until there are at least 3 million blood stem cells per kilogram body weight collected from the patient. At the NIH the patient blood stem cells will be cells collected previously under NIH protocol 94-I-0073 or collected on this protocol. In most cases the harvested blood stem cells are put into frozen storage before use in this protocol. When the patient enrolled in this protocol has the required number of blood stem cells harvested, then the patient s blood stem cells will be grown in tissue culture and exposed to the lentiviral gene transfer vector containing the corrective gene. These gene corrected blood stem cells will be administered by vein to the patient. To increase engraftment of the corrected blood stem cells, patients will receive on 2 days before the gene transfer treatment a chemotherapy drug called busulfan at a total dose of 6 mg/kilogram body weight (3 mg/kilogram body weight/daily times 2 days) that is a little more than one- third the dose used in many standard bone marrow transplants. Patients will also be given another drug called palifermin that helps prevent the main side effect from the busulfan that is a type of inflammation the mouth, stomach and bowels called mucositis. After this treatment, patients will be monitored to see if the treatment is safe and whether their immune system improves. Patients will be followed at frequent intervals for the first 2 years, and less frequently thereafter so that the effectiveness in restoration of immune function and the safety of the treatment can be evaluated. XSCID is a genetic disease caused by defects in common gamma chain, a protein found at the surface of immune cells called lymphocytes and necessary to their growth and function. XSCID patients cannot make T-lymphocytes necessary to fight infections, and their B-cells fail to make essential antibodies. Without normal T- and B-lymphocyte function patients develop fatal infections in infancy unless they are rescued by a bone marrow transplant from a healthy donor. The best type of transplant is from a tissue matched healthy brother or sister, but most XSCID patients do not have a tissue-matched sibling, and are treated with a transplant from a parent who is only half- matched by tissue typing. While a half-matched transplant from a parent can be life-saving for an infant with XSCID, a subset of patients fail to achieve sufficient long lasting restoration of immunity to prevent infections and other chronic problems. Recent trials of gene transfer treatments using mouse retrovirus vectors for infants with XSCID have been performed and have demonstrated that this type of gene transfer can be an alternate approach for significantly restoring immunity to infants with XSCID. However, among the 18 infants with XSCID benefiting long-term from the gene transfer treatment, 5 developed T-lymphocyte leukemia and 1 died of this leukemia. Furthermore, when older children with XSCID were treated with gene transfer, the restoration of immunity was very much less than seen in the infants. These observations of gene transfer treatments using mouse retrovirus vectors to treat infants and older patients with XSCID suggests that safer and more effective vectors were needed, and that there also may be a need to give chemotherapy or other mode of conditioning to increase engraftment in the marrow of the gene corrected blood stem cells. Our data and other published studies suggest that lentivectors that are derived from the human immunodeficiency virus and have the properties of our highly modified vector called CL20-4i-EF1 - h >=c-OPT have a reduced interaction with nearby genes and therefore less of a tendency to activate genes that may lead to cancer formation. Also, this type of lentivector may work better at getting into blood stem cells. The study purpose is to evaluate safety and effectiveness of lentiviral gene transfer treatment at restoring immune function to 23 XSCID patients who are 2 to 40 years of age, and have significant impairment of immunity. Early evidence for effectiveness will be defined by appearance and expansion in the circulation of the patient s own gene corrected T-lymphoc...

Suspended52 enrollment criteria

Genetic Basis of Immunodeficiency

Severe Combined Immunodeficiency

This study will examine the role of hereditary factors in different forms of severe combined immunodeficiency (SCID). Patients with immunodeficiencies may be eligible for this study. Candidates include: Patients with diminished numbers of T cells or NK cells or both, or Patients with normal T cell and NK cell numbers but diminished T cell, B cell, or NK cell function. Relatives of patients will also be studied. Participants will have blood samples collected for genetic analysis in studies related to SCID at the National Institutes of Health and other institutions.

Recruiting8 enrollment criteria

Multi-center Clinical Study of Cord Blood Stem Cell Transplantation for SCID

Severe Combined Immunodeficiency Disease

Severe combined immunodeficiency (SCID) is a rare disease caused by a group of genetic disorders that leads to early death from recurrent infections in affected children.The only curative therapy for SCID is allogeneic hematopoietic stem cell transplantation.Unrelated umbilical cord blood(UCB) is increasingly used as an alternative to bone marrow.

Active9 enrollment criteria

Hematopoietic Stem Cell Transplantation (HSCT) for Children With SCID Utilizing Alemtuzumab, Plerixafor...

Severe Combined Immunodeficiency

The goal of this study is to develop a novel approach to hematopoietic stem cell transplantation for children with Severe Combined Immunodeficiency Disease (SCID) that eliminates the use of toxic chemotherapy conditioning and maximizes the likelihood of T and B cell immune reconstitution. Rather than classic chemotherapeutic agents, the investigators will utilize a targeted stem cell mobilizer, plerixafor, in combination with alemtuzumab, a monoclonal antibody. Correlative scientific questions will include: 1) efficacy and characteristics of host stem cell mobilization; and 2) alemtuzumab pharmacokinetics in very young children.

Terminated5 enrollment criteria

Treatment for Growth Failure in Patients With X-Linked Severe Combined Immunodeficiency: Phase 2...

Growth FailureX-linked Severe Combined Immunodeficiency (XSCID)1 more

This study will evaluate the safety and effectiveness of insulin-like growth factor-1 (IGF-1) to treat patients with X-linked severe combined immunodeficiency (XSCID). Those who have XSCID lack white blood cells that protect their bodies from invasion by all types of germs. IGF-1 is the main hormone responsible for the body's growth and metabolism. As a medication, IGF-1 is Increlex[(Trademark)] (mecasermin), Patients ages 2 to 20 who have not yet begun puberty, have a diagnosis of XSCID, and are shorter than the 3rd percentile for their age may be eligible for this study. This study will last about 3 years, and patients' visits will be scheduled at 3-month intervals. Patients will have a physical history and exam, X-rays, electrocardiogram, blood tests, and body measurements. Patients will take estradiol orally for 2 days, to help avoid false results of growth hormone (GH) levels in blood samples. Then provocation testing is done, with two tests back to back. It determines blood levels of GH and the body's response to testing with drugs called arginine and clonidine. Patients are admitted to the pediatric inpatient unit and will have an intravenous (IV) line placed in the arm. Arginine is given by IV over 30 minutes, and blood samples are taken. Right after arginine testing, the clonidine tablet is given. The IGF-1 generation test is then done to see if the body makes IGF-1 as a product in response to injections of GH for 5 consecutive days. This test does not require that patients are inpatients, but after Day 8, patients must be admitted to the pediatric unit to have blood sampling, start Increlex injections, and start close monitoring of blood sugar levels. They will learn how to do a self-injection and follow other advice. They will complete records about the injection site, symptoms, and side effects-keeping records for at least the first 2 days after going home, with each dose change, and as needed. Patients stick their fingertip and place a small drop of blood on a blood sugar monitoring strip. The strip is put into a glucometer-a small hand-held device to measure the blood sugar level. Patients will be instructed to always have a source of sugar available in case blood sugar is too low. ...

Terminated16 enrollment criteria

Allogeneic SCT Of Pts With SCID And Other Primary Immunodeficiency Disorders

Severe Combined Immunodeficiency DiseaseSevere Primary Immunodeficiency Disorder2 more

This study is to discover whether children with severe combined immunodeficiency disease (SCID) or other primary immunodeficiency disorder (PID) for which no satisfactory treatment other than stem cell transplantation (SCT) exists can be safely and effectively transplanted from HLA mismatched (up to one haplotype) related donors or unrelated matched or mismatched (up to one antigen) donors, when leukocytolytic monoclonal antibodies (MAb) and Fludarabine are the sole conditioning agents. Three monoclonal antibodies will be used in combination. Two of them are rat IgG1 (immunoglobulin G1) antibodies directed against two contiguous epitopes on the CD45 (common leucocyte) antigen. They have been safely administered as part of the conditioning regimen for 12 patients receiving allografts (HLA matched and mismatched) at this center. They produce a transient depletion of >90% circulating leucocytes. The third MAb is Campath 1H, a humanized rat anti-CD52 MAb. Campath 1H, Alemtuzumab, has been licensed to treat B-cell chronic lymphocytic leukemia (B-CLL) and more recently has been safely given at this and other centers as part of a sub-ablative conditioning regimen to patients with malignant disease. Because these MAb produce both profound immunosuppression and significant, though transient, myelodestruction we believe they may be useful as the sole conditioning regimen in patients with SCID, in whom the use of conventional chemotherapeutic agents for conditioning may produce or aggravate unacceptable and even lethal short term toxicity. We anticipate MAb mediated subablative conditioning will permit engraftment in a high percentage of these patients with little or no immediate or long term toxicity. Campath IH persists in vivo for several days after administration and so will be present over the transplant period to deplete donor T cells as partial GvHD prophylaxis. Additional Graft versus Host Disease (GvHD) prophylaxis may be provided by administration of FK506.

Terminated14 enrollment criteria
1234...7

Need Help? Contact our team!


We'll reach out to this number within 24 hrs