search

Active clinical trials for "Shy-Drager Syndrome"

Results 121-130 of 158

Magnetic Resonance Spectroscopy in Autonomic Failure

Pure Autonomic FailureMultiple System Atrophy

This research study will be conducted in patients with primary autonomic failure, a disabling condition that is associated with low blood pressure upon standing. These patients are also not able to control for changes in their blood pressure due to a loss of cardiovascular reflexes that are mediated within the brain. The purpose of this study is to determine whether magnetic resonance spectroscopy (MRS), a non-invasive imaging technique, can measure levels of chemicals (neurotransmitters) in the dorsal medulla, a brain area important for control of cardiovascular function, in autonomic failure patients. Importantly, this study will determine whether there are differences in brain chemicals between patients with peripheral versus central origins of their autonomic failure. The hypothesis is that the neurotransmitter profile in the medulla will be intact in patients with peripheral autonomic failure compared to those with central impairment. Overall, this study will provide insight into understanding the mechanisms involved in autonomic failure and will determine whether a single session of MRS imaging can improve the ability to make an accurate diagnosis in these patients. This would lessen the need for more extensive and invasive clinical testing.

Terminated11 enrollment criteria

Botulinum A Toxin in Patients With Parkinson's Disease

Parkinson's DiseaseMultiple System Atrophy1 more

The researchers investigated the effectiveness and safety of BoNT/A injected into the detrusor muscle in patients with PD and MSA all of whom had detrusor muscle overactivity unresponsive to conventional medical therapy.

Unknown status4 enrollment criteria

tDCS for Multiple System Atrophy With Cerebellar Feature

Multiple System AtrophyCerebellar Variant (Disorder)

The aim of study is to investigate most effective site for control the motor coordination using transcranial direct current stimulation in multiple system atrophy with cerebellar feature

Unknown status10 enrollment criteria

Potential Use of Autologous and Allogeneic Mesenchymal Stem Cells in Patients With Multiple System...

Multiple System AtrophyParkinsonism2 more

The prevalence of Multiple System Atrophy (MSA) is reported to be between 3.4 - 4.9 cases per 100,000 population. The estimated average incidence is 0.6 - 0.7 cases per 100,000 people per year. Many patients are not diagnosed properly during their lifetime because of the difficulty in differentiating MSA from other disorders. Approximately 29 - 33% of patients with isolated late onset cerebellar ataxia and 8 - 10% of patients with parkinsonism will develop MSA. There are currently no therapies that can cure or stop the progression of the disease. The current pharmacological therapy is only to relieve symptoms. Mesenchymal stem cells (MSC) are considered an efficient source of cells for therapy, because they can be safely harvested and transplanted to donors or patients, have low immunogenicity, and have broad therapeutic potential. Results from preliminary preclinical and clinical trials indicate the potential of MSC-based treatment in meeting several key aspects of neurodegeneration. Stem cell-based therapy for neurodegenerative diseases aims to stop clinical damage by regenerating and by providing local support for damaged tissue, in addition after transplantation, MSCs have been shown to be capable of penetrating the lesion area and thus have great potential use as a means of administering therapeutic agents. The subjects of this study were patients who experienced possible MSA based on the consensus clinical criteria for MSA. There will be three treatment groups with a total sample of 5 subjects each. Group 1 will receives MSC-Adipose Autologous with doses 2x50 million cells intratechally. Group 2 will receives MSC-Umbilical Cord Allogeneic with doses 2x 50 million cells intratechally. Group 3 will receives MSC-Umbilical Cord Allogeneic with doses 2x50 million cells intratechally and 2x10cc secretome MSC from Adipose Intravenously. Clinical improvement will be evaluated using the UMSARS scale, PET-Scans, MRI, DaTScan, IGF-1, BDNF, Sympathetic skin respons (SSR), EMG, Composite Autonomic Severity Score (CASS), High definition-Optical coherence tomography (HD-OCT), ERG, VEP, Log MAR chart, Ishihara test and side adverse effect on MSC. This study is divided into six timeframes : Before an implantation, First Month after second implantation, Third month after secondary implantation, Sixth month after second implantation, Ninth month after second implantation and Twelve month after second implantation. The differences between the test variables are then used as an indicator to assess clinical improvement within the subjects.

Unknown status17 enrollment criteria

Fipamezole in Neurogenic Orthostatic Hypotension

Symptomatic Neurogenic Orthostatic Hypotension (NOH)Parkinson's Disease1 more

The purpose of this study is to determine whether Fipamezole is effective in the treatment of orthostatic hypotension and related symptoms in multiple system atrophy and Parkinson's disease.

Unknown status14 enrollment criteria

Spinal Cord Stimulation and Autonomic Response in People With SCI.

Spinal Cord InjuriesAutonomic Dysreflexia2 more

Despite being studied less than half as frequently, autonomic dysfunction is a greater priority than walking again in spinal cord injury. One autonomic condition after spinal cord injury is orthostatic hypotension, where blood pressure dramatically declines when patients assume the upright posture. Orthostatic hypotension is associated with all-cause mortality and cardiovascular incidents as well as fatigue and cognitive dysfunction, and it almost certainly contributes to an elevated risk of heart disease and stroke in people with spinal cord injury. In addition, autonomic dysfunction leads to bladder, bowel, sexual dysfunctions, which are major contributors to reduced quality and quantity of life. Unfortunately, the available options for treating this condition, are primarily limited to pharmacological options, which are not effective and are associated with various side effects. It has been recently demonstrated that spinal cord stimulation can modulate autonomic circuits and improve autonomic function in people living with spinal cord injury. Neuroanatomically, the thoracolumbar sympathetic pathways are the primary spinal cord segments involved in blood pressure control. Recently, a pilot study has been published demonstrating that transcutaneous spinal cord stimulation of thoracolumbar afferents can improve cardiovascular function. However, some studies have shown that lumbosacral transcutaneous spinal cord stimulation can also elicit positive cardiovascular effects. Therefore, there is no consensus on the optimal strategy in order to deliver transcutaneous spinal cord stimulation to improve the function of the autonomic system, and it may be that lumbosacral (i.e. the stimulation site being used most commonly for restoring leg function is sufficient). Another key knowledge gap in terms of transcutaneous spinal cord stimulation is whether or not the current is directly or indirectly activating these spinal circuits. Last but not least, the effects of epidural spinal cord stimulation on the function of cardiovascular, bladder, bowel and sexual system in spinal cord injury have been investigated in no study yet. AIMS AND HYPOTHESES: Aim 1. To examine the effects of short-term (one session) transcutaneous spinal cord stimulation on the frequency and severity of episodes of orthostatic hypotension/autonomic dysfunction, and bladder, bowel, and sexual functions. These effects will be compared at two sites of stimulation. Hypothesis 1.1: Short-term transcutaneous mid-thoracic cord stimulation will mitigate the severity and frequency of orthostatic hypotension/autonomic dysfunction. Hypothesis 1.2: Lumbosacral transcutaneous spinal cord stimulation will improve bladder, bowel, and sexual functions. Aim 2. To examine the effects of long-term (one month) transcutaneous spinal cord stimulation on the severity and frequency of orthostatic hypotension/autonomic dysfunction. Hypothesis 2.1: Long-term stimulation of the mid-thoracic cord will result in sustained improvements in mitigated severity and frequency of orthostatic hypotension/autonomic dysfunction that is not dependent on active stimulation. Hypothesis 2.2: Long-term lumbosacral transcutaneous spinal cord stimulation will result in sustained improvements in bowel, bladder, and sexual function that is not dependent on active stimulation. Aim 3: To examine the effects of short-term (one session) epidural spinal cord stimulation on the severity and frequency of orthostatic hypotension/autonomic dysfunction, and bladder, bowel, and sexual functions. Hypothesis 3.1: Epidural spinal cord stimulation will mitigate the severity and frequency of orthostatic hypotension/autonomic dysfunction and improve bladder, bowel, and sexual function. Hypothesis 3.3: There is no significant difference between immediate effects of lumbosacral transcutaneous spinal cord stimulation and epidural spinal cord stimulation on bladder, bowel, and sexual function. For aim 1, 14 participants with spinal cord injury and no implanted electrodes on the spinal cord will be recruited. Participants will randomly receive one-hour stimulation under each of the two stimulation conditions in a crossover manner: Mid-thoracic and Lumbosacral. For aim 2, 28 individuals with spinal cord injury and no implanted electrode will be pseudo-randomized (1:1) to one of two stimulation sites. Participants will receive one-hour stimulation, five sessions per week for four weeks. Cardiovascular and neurological outcomes will be measured before the first stimulation session and after the last stimulation session. For aim 3, 4 participants with spinal cord injury with implanted electrodes on the spinal cord will be recruited to study the immediate effects of invasive epidural spinal cord stimulation. All outcomes will be measured in two positions: a) Supine, b) ~ 70° upright tilt-test. Additionally, bowel, bladder, and sexual functions in project 2 will be assessed weekly.

Unknown status21 enrollment criteria

Analysis of the Enteric Nervous System Using Colonic Biopsies

Parkinson's DiseaseMultiple System Atrophy1 more

The aim of this project is to develop an original biomarker for Parkinson's disease (PD) and other parkinsonian syndromes (multiple system atrophy and progressive supranuclear palsy) based upon the detection of pathological alpha-synuclein species in routine colonoscopic biopsies.

Completed21 enrollment criteria

Differential Diagnosis Between Parkinson's Disease and Multiple System Atrophy Using Digital Speech...

Parkinson DiseaseMSA - Multiple System Atrophy

Parkinson's disease (PD) is the second most common neurodegenerative disease. Multiple system atrophy (MSA) is a relentlessly progressing rare neurodegenerative disease of unknown etiology. In early stages of the disease, PD and MSA symptoms are very similar, particularly MSA-P where Parkinsonism predominates. The differential diagnosis between MSA-P and PD can be very challenging in early disease stages, while early diagnostic certitude is important for the patient because of the diverging prognosis. Voice disorders are a common early symptom in both diseases and of different origin. The ambition and the originality of this project are to develop a digital voice-based tool for objective discrimination between PD and MSA-P.

Completed13 enrollment criteria

The Autonomic Nervous System and Obesity

OBESITYHYPERTENSION2 more

In its simplest terms, obesity is the results of a positive balance between food intake and energy expenditure (EE). I.e., we take in more energy, in the form of food, than we expend, e.g., by exercise. In our sedentary society, resting EE accounts for most of total energy expenditure. The sympathetic nervous system (SNS, the one that produces adrenaline) is thought to contribute to resting EE. This conclusion is based on experiments where resting EE is decreased by beta-blockers, high blood pressure medicines that block only one aspect of the sympathetic nervous system. The investigators propose to use a different approach, by using a medication called trimethaphan that produces transient withdrawal of the autonomic nervous system. The investigators will then compare the measured resting EE before and after SNS withdraw and quantify the degree of contribution to the resting EE by the SNS and delineate differences between healthy normal, healthy obese, and patients with autonomic dysfunctions.

Completed8 enrollment criteria

Evaluation of a Multimodal Neuroimaging Method for Diagnosis in Parkinsonian Syndromes

Parkinson's DiseaseMultiple System Atrophy

Based on previous promising results, the next step for the validation of a multimodal MRI method in diagnosis and follow up of patients reached by parkinsonian syndromes is (i) to test whether the multimodal neuroimaging is able to discriminate at the individual level, patients with multiple system atrophy parkinsonism (MSA) and patients with idiopathic Parkinson's disease (PD) (ii) to determine whether the method is sensitive to measure changes over time for the two diseases, according to imaging, neuropsychological and other clinical data. Patients will be compared with healthy controls.

Completed12 enrollment criteria
1...121314...16

Need Help? Contact our team!


We'll reach out to this number within 24 hrs