Efficacy of Intersectional Short Pulse Stimulation for Terminating Seizures
SeizuresFocal EpilepsyThis is a study which seeks to develop a novel therapeutic approach, Intersectional Short Pulse (ISP) stimulation for seizure termination. The device embodiment of ISP is a scalp EEG recording system which also delivers spatially precise electrical stimulation in short pulses to the targeted brain region. The study team has already collected safety and tolerability data in human subjects, demonstrated ISP efficacy in terminating seizures in rodents, and have tested the efficacy of this device to modulate normal human brain activity. Now this study proposes to test the device's efficacy in stopping seizures in a within-subject randomized, sham-controlled study design.
Electrical Neuromodulation for Focal Epilepsy
EpilepsyThe purpose of this research is to use electrical neuromodulation on patients with focal epilepsy. The main objective is to assess safety and observe potential therapeutic effects.
Breathing Rescue for SUDEP Prevention
Focal EpilepsyThe purpose of this study is to precisely delineate human brain networks that modulate respiration and identify specific brain areas and stimulation techniques that can be used to prevent seizure-induced breathing failure.
Novel Network Analysis of Intracranial Stereoelectroencephalography
Epilepsy in ChildrenFocal Epilepsy7 moreEpilepsy is a disorder of the brain which is associated with disabling seizures and affects 100,000 people under 25. Many children with epilepsy also have a learning disability or problems with development. Although better outcomes occur in children who are successfully treated early for their epilepsy, 25% continue to have seizures despite best medical treatment. One potential treatment is a neurosurgical operation to remove parts of the brain that generate seizures. A proportion of these children have electrodes inserted into their brains as part of their clinical assessment, termed stereoelectroencephalography (SEEG), to help localise these regions. Subsequent surgery is not always successful - up to 40% of children will have ongoing seizures 5 years after surgery. The purpose of this study is to assess the utility of specially designed SEEG electrodes which can measure signals from single brain cells. These electrodes record the same clinical information as normal SEEG electrodes and are implanted in the same way, but can give the research team extra information at the same time. The investigators aim to assess whether studying the changes in the firing of individual cells, both during and between seizures, improves our ability to localise seizures and therefore improve outcomes following surgery. As part of this research project, the investigators will not be doing anything that is not already part of the normal investigation and treatment for these children. Children will be recruited to the study during routine outpatient clinic visits. Surgical planning and execution will not be affected. The electrodes are CE licensed for clinical use and do not alter the risks of the operation. Following the period of monitoring, the care of these children would not be altered in any way. The investigators aim to recruit 30 patients over 3 years. In addition to dissemination via scientific publications and presentations, the findings will be shared with participants and the public.
Optimized Volumetry in Radiology: Interest in Pediatric Brain MRI in the Exploration of Focal Epilepsy...
Focal EpilepsyMulticentre cross-sectional study with prospective recruitment comparing the detection rate of lesions on brain MRI without and with quantitative volumetry and T1 relaxometry information during the management of children with suspected focal epilepsy.
Investigating Epilepsy: Screening and Evaluation
SeizuresEpilepsy3 moreBackground: Epilepsy affects about 1 percent of the U.S. population. Most people with epilepsy respond well to medicine, but some do not. Researchers want people who have diagnosed or suspected epilepsy to participate in ongoing studies. They want to learn more about clinical care for epilepsy. They want fellows and residents to learn more about the care of people with epilepsy. Objectives: To learn more about seizures and find ways to best treat people with drug-resistant epilepsy. Eligibility: Adults and children ages 8 years and older with diagnosed or suspected epilepsy Design: Participants will be screened with: Physical exam Medical history Questionnaires Participants will have many visits. They may be admitted to the hospital for several weeks. Their medication might be stopped or changed. Participants will have many tests: Blood and urine tests EEG: Wires attached to the head with paste record brain waves. This may be videotaped. Thinking and memory tests MRI: Participants lie on a table that slides in and out of a tube. They perform simple tasks in the tube. MEG: Participants lie on a table and place their head in a helmet to record brain waves. PET scan: Participants lie on a table that slides into a machine. A small amount of radioactive dye is injected into their arm with an IV. For the IV, a small tube is inserted into the arm with a needle. Participants will stay enrolled in this study if they join other epilepsy-related studies. They may be contacted at intervals for follow-up. Their participation will end if they have not been seen clinically for their epilepsy for 3 years.
Genetic and Electrophysiologic Study in Focal Drug-resistant Epilepsies
Refractory Focal EpilepsyFocal Cortical Dysplasia3 moreBrain somatic mutations in genes belonging to the mTOR signaling pathway are a frequent cause of cortical malformations, including focal cortical dysplasia or hemimegalencephaly. The present study aims to search for brain somatic mutations in paired blood-brain samples and perform functional validation in children with drug-resistant focal epilepsy
Genetics of Severe Early Onset Epilepsies
EpilepsyEpileptic Encephalopathy6 moreInvestigators at Boston Children's Hospital are conducting research in order to better understand the genetic factors which may contribute to disorders related to epilepsy. These findings may help explain the broad spectrum of clinical characteristics and outcomes seen in people with epilepsy.
Atlas of Human Cognition by SEEG (MAPCOG-SEEG)
Refractory EpilepsyFocal EpilepsyThe main objective of MAPCOG_SEEG is to create a database including brain recordings of cognition performed in clinical routine in patients during the pre-surgical SEEG assessment. This aims to be able to propose the first atlas of human cognition with a high temporal and spatial resolution.
Surgery as a Treatment for Medically Intractable Epilepsy
EpilepsyEpilepsy2 moreBackground: - Drug resistant epilepsy is the term used to describe epilepsy that cannot be controlled by medication. Many people whose seizures do not respond to medication will respond to surgical treatment, relieving seizures completely or almost completely in one-half to two-thirds of patients who qualify for surgery. The tests and surgery performed as part of this treatment are not experimental, but researchers are interested in using the data collected as part of routine standard epilepsy care to better understand epilepsy and its treatment. Objectives: - To use surgery as a treatment for drug resistant epilepsy in children and adults. Eligibility: - Children and adults at least 8 years of age who have simple or complex partial seizures (seizures that come from one area of the brain) that have not responded to medication, and who are willing to have brain surgery to treat their medically intractable epilepsy. Design: Participants will be screened with a medical history, physical examination, and neurological examination. Imaging studies, including magnetic resonance imaging and computer-assisted tomography (CT), may also be conducted as part of the screening. Participants who do not need surgery or whose epilepsy cannot be treated surgically will follow up with a primary care physician or neurologist and will not need to return to the National Institutes of Health for this study. Prior to the surgery, participants will have the following procedures to provide information on the correct surgical approach. Video electroencephalography monitoring to measure brain activity during normal activities within a 24-hour period. Three to four 15-minute breaks are allowed within this period. Electrodes placed directly in the brain or on the surface of the brain to measure brain activities and determine the part of the brain that is responsible for the seizures (seizure focus). Participants will have a surgical procedure at the site of their seizure focus. Brain lesions, abnormal blood vessels, tumors, infections, or other areas of brain abnormality will be either removed or treated in a way that will stop or help prevent the spread of seizures without affecting irreplaceable brain functions, such as the ability to speak, understand, move, feel, or see. Participants will return for outpatient visits and brain imaging studies 2 months, 1 year, and 2 years after surgery.