Sample Collection Study in Patients With Suspected Melanoma Utilizing DermTech's Non-invasive Adhesive...
Melanoma (Skin)Pigmented Skin1 moreA multi-center sample collection study in patients presenting with pigmented lesion(s) suspicious for melanoma. All suspicious lesions should meet at least one of the "ABCDE" criteria.
Artificial Intelligence-assisted Evaluation of Pigmented Skin Lesions
MelanomaPigmented Skin Lesion1 moreMalignant melanoma (MM) is a deadly cancer, claiming globally about 160000 new cases per year and 48000 deaths at a 1:28 lifetime incidence (2016). The golden standard, dermoscopy, enables Dermatologists to diagnose with a sensitivity of 40%, and a 8-12% specificity, approximately. Additional diagnostic abilities are restricted to devices which are either unproved or experimental. A new technology of Neuronal Network Clinical Decision Support (NNCD) was developed. It uses a dermoscopic imaging device and a camera able to capture an image. The photo is transferred to a Cloud Server and further analyzed by a trained classifier. Classifier training is aimed at a high accuracy diagnosis of Dysplastic Nevi (DN), Spitz Nevi and Malignant Melanoma detection with assistance from a Deep Neuronal Learning network (DLN). Diagnosis output is an excise or do not excise recommendation for pigmented skin lesions. A total of 80 subjects already referred to biopsy pigmented skin lesions will be examined by dermoscopy imaging in a non interventional study. Artificial Intelligence output results, as measured by 2 different dermoscopes, to be compared to ground truth biopsies, by either classifier decisions or a novel Modified Classifier Technology output decisions. Primary endpoints are sensitivity and specificity detection of the NNCD techniques. Secondary endpoints are the positive and negative prediction ratios of NNCD techniques.