search

Active clinical trials for "Astrocytoma"

Results 171-180 of 370

Evaluate the Safety and Effectiveness of Intranasal Administration of Temozolomide in Patients With...

GliomaMalignant2 more

The purpose of this pilot study is to determine the safety, tolerability, and the maximum tolerated dose intranasal administration of temozolomide (TMZ) as a single agent in Treatment on the patients with GBM. Intranasal administration is a new method of treating brain tumours for the direct administration of drugs, inhibitors or viruses, with minimal involvement of the BBB. The investigators know the orally prescribed standard chemotherapy temozolomide (TMZ) is widely used to treat glioma tumours. Received evidence of safety and efficacy in a full cycle of preclinical trials (on GLP Standart) and tests of calculated doses of intranasal administration of TMZ in healthy volunteers. Intranasal administration of temozolomide is considered as GBM therapy, which provides direct access to a therapeutic dose of the drug into the brain (to the neoplastic process) with low toxicity

Completed17 enrollment criteria

TVB- 2640 in Combination With Bevacizumab in Patients With First Relapse of High Grade Astrocytoma...

Astrocytoma

Randomized phase 2 study TVB-2640 in combination with Bevacizumab versus Bevacizumab alone.

Completed22 enrollment criteria

Testing Cerebrospinal Fluid for Cell-free Tumor DNA in Children, Adolescents, and Young Adults With...

Anaplastic AstrocytomaDiffuse Brainstem Glioma20 more

Recent advances in technology have allowed for the detection of cell-free DNA (cfDNA). cfDNA is tumor DNA that can be found in the fluid that surrounds the brain and spinal cord (called cerebrospinal fluid or CSF) and in the blood of patients with brain tumors. The detection of cfDNA in blood and CSF is known as a "liquid biopsy" and is non-invasive, meaning it does not require a surgery or biopsy of tumor tissue. Multiple studies in other cancer types have shown that cfDNA can be used for diagnosis, to monitor disease response to treatment, and to understand the genetic changes that occur in brain tumors over time. Study doctors hope that by studying these tests in pediatric brain tumor patients, they will be able to use liquid biopsy in place of tests that have more risks for patients, like surgery. There is no treatment provided on this study. Patients who have CSF samples taken as part of regular care will be asked to provide extra samples for this study. The study doctor will collect a minimum of one extra tube of CSF (about 1 teaspoon or 5 mL) for this study. If the patients doctor thinks it is safe, up to 2 tubes of CSF (about 4 teaspoons or up to 20 mL) may be collected. CSF will be collected through the indwelling catheter device or through a needle inserted into the lower part of the patient's spine (known as a spinal tap or lumbar puncture). A required blood sample (about ½ a teaspoon or 2 3 mL) will be collected once at the start of the study. This sample will be used to help determine changes found in the CSF. Blood will be collected from the patient's central line or arm as a part of regular care. An optional tumor tissue if obtained within 8 weeks of CSF collection will be collected if available. Similarities between changes in the DNA of the tissue that has caused the tumor to form and grow with the cfDNA from CSF will be compared. This will help understand if CSF can be used instead of tumor tissue for diagnosis. Up to 300 people will take part in this study. This study will use genetic tests that may identify changes in the genes in the CSF. The report of the somatic mutations (the mutations that are found in the tumor only) will become part of the medical record. The results of the cfDNA sequencing will be shared with the patient. The study doctor will discuss what the results mean for the patient and patient's diagnosis and treatment. There will not be any germline sequencing results reported and these will not be disclosed to the patient, patient's clinician or be recorded in patient medical record. Patient may be monitored on this study for up to 5 years.

Not yet recruiting27 enrollment criteria

Study of Efficacy and Safety of Dabrafenib in Combination With Trametinib in Pediatric Patients...

Diffuse AstrocytomaAnaplastic Astrocytoma21 more

The purpose of this study was to investigate the activity of dabrafenib in combination with trametinib in children and adolescent patients with BRAF V600 mutation positive low grade glioma (LGG) or relapsed or refractory high grade glioma (HGG)

Completed11 enrollment criteria

Aflac ST0901 CHOANOME - Sirolimus in Solid Tumors

Ewing's SarcomaOsteosarcoma14 more

The best treatment for recurrent cancers or those that do not respond to therapies is not known. Typically, patients with these cancers receive a combination of cancer drugs (chemotherapy), surgery, or radiation therapy. These treatments can prolong their life but may not offer a long-term cure. This study proposes using a drug called Sirolimus in combination with common chemotherapy drugs to treat patients with recurrent and refractory solid tumors. Sirolimus has been found to inhibit cell growth and to have anti-tumor activity in pediatric solid tumors in previous studies and, therefore, has the potential to increase the effectiveness of the chemotherapy drugs when given together. This study wil investigate the highest dose of Sirolimus that can be given orally with other oral chemotherapy drugs. Cohorts of 2 subjects will be started at the minimum dose. The dose will be increased in the next 2 subjects as long as there were no major reactions in the previous groups. This study will also seek to learn more about the side effects of sirolimus when used in this combination and what effects the drug has on the white cells and the immune system. Successful use of this drug will impact the cancer population greatly by providing an increased chance of survival to those with resistant or recurrent cancers.

Completed15 enrollment criteria

Study To Test the Safety and Efficacy of TVI-Brain-1 As A Treatment for Recurrent Grade IV Glioma...

Grade IV GliomaGrade IV Astrocytoma1 more

TVI-Brain-1 is an experimental treatment that takes advantage of the fact that your body can produce immune cells, called 'killer' white blood cells that have the ability to kill large numbers of the cancer cells that are present in your body. TVI-Brain-1 is designed to generate large numbers of those 'killer' white blood cells and to deliver those cells into your body so that they can kill your cancer cells.

Completed21 enrollment criteria

AZD8055 for Adults With Recurrent Gliomas

Glioblastoma MultiformeAnaplastic Astrocytoma3 more

Background: - AZD8055 is an experimental cancer treatment drug that works by inhibiting a protein called mTOR, which is known to promote tumor cell and blood vessel growth and to control tumor s energy and nutrient levels. AZD8055 is the first drug that inhibits both types of mTOR protein and is expected to be more effective than prior mTOR inhibitors. However, more research is needed to determine its safety and effectiveness in treating brain tumors known as gliomas that have not responded to standard treatments. Objectives: - To evaluate the safety and effectiveness of AZD8055 in individuals with gliomas that have not responded to standard treatments. Eligibility: - Individuals at least 18 years of age who have been diagnosed with gliomas that have not responded to standard chemotherapy, surgery, or radiation. Design: Participants will be screened with a physical examination, medical history, blood tests, and tumor imaging studies. Participants will be separated into two treatment groups: one group that will receive surgery to remove the glioma and one that will not have surgical treatment. Participants in the nonsurgical treatment group will take AZD8055 by mouth daily for a 42-day cycle of treatment. Participants will keep a diary to record doses and keep track of any side effects. Participants in the surgical treatment group will take AZD8055 by mouth daily for 7 days, and then will have tumor removal surgery. At least 3 weeks after surgery, participants will resume doses of AZD8055 and will continue to take the drug for as long as the tumor does not recur. During treatment, participants will have regular visits to the clinical center, involving frequent blood and urine tests and other examinations to monitor the effects of treatment. Participants will have imaging studies to study the cancer's response to the treatment. Participants will continue to have cycles of treatment for as long as the treatment continues to be effective and the side effects are not severe enough to stop participation in the study....

Completed47 enrollment criteria

Perifosine and Torisel (Temsirolimus) for Recurrent/Progressive Malignant Gliomas

Brain TumorRecurrent4 more

The purpose of this study is to test the effectiveness of a drug called temsirolimus in combination with a drug called perifosine in treating brain tumors that have continued to grow after previous treatment. Temsirolimus is an intravenous drug approved by the FDA for treatment of other cancers (kidney cancer, certain types of lymphoma) but not for brain tumors. Perifosine is a pill that has not been approved by the FDA which blocks a messenger that tells cancer cells to grow. Research suggests that combined treatment with both drugs is better than either alone, and that it is reasonably safe.

Completed47 enrollment criteria

Vorinostat and Radiation Therapy Followed by Maintenance Therapy With Vorinostat in Treating Younger...

Anaplastic AstrocytomaAnaplastic Oligoastrocytoma2 more

This phase I/II trial studies the side effects and best dose of vorinostat and to see how well it works when given together with radiation therapy followed by maintenance therapy with vorinostat in treating younger patients with newly diagnosed diffuse intrinsic pontine glioma (a brainstem tumor). Vorinostat may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Radiation therapy uses high-energy x-rays to kill tumor cells. Giving vorinostat together with radiation therapy may kill more tumor cells.

Completed28 enrollment criteria

Exploratory Study of XL765 (SAR245409) or XL147 (SAR245408) in Subjects With Recurrent Glioblastoma...

GlioblastomaAstrocytoma1 more

The purpose of this study is to measure what effect the study drug XL765 (SAR245409) or the study drug XL147 (SAR245408) has on tumor tissue in subjects with recurrent glioblastoma (GB) who are candidates for surgical resection. XL765 (SAR245409) and XL147 (SAR245408), the two investigational agents examined in this study, XL147 (SAR245408) is a potent inhibitor of PI3 Kinase (PI3K) and XL765 (SAR245409) is a dual PI3K and mTOR inhibitor. In preclinical studies, inactivation of PI3K has been shown to inhibit growth and induce apoptosis (programmed cell death) in tumor cells.

Completed27 enrollment criteria
1...171819...37

Need Help? Contact our team!


We'll reach out to this number within 24 hrs