search

Active clinical trials for "Astrocytoma"

Results 201-210 of 370

Treatment of Newly Diagnosed Brain Tumors With Chemotherapy and Radiation Using Cells Modified for...

Glioblastoma Multiforme (WHO Grade IV)Anaplastic Astrocytoma (WHO Grade III)

Cure rates for patients with high grade glioma remain disappointing, in part because tumor cells are often resistant to chemotherapy, and because using higher doses of chemotherapy causes damage to normal blood cells. This trial is designed to try to overcome both of these barriers. The idea is to make tumor cells more sensitive to a chemotherapy agent, Temozolomide, by using 06Benzylguanine (06BG). In addition, patients will have a portion of their blood cells modified by the insertion of a chemotherapy resistance gene which may help protect blood cells from damage by the combination of the Temozolomide and 06BG.

Terminated19 enrollment criteria

FR901228 in Treating Children With Refractory or Recurrent Solid Tumors or Leukemia

Blastic Phase Chronic Myelogenous LeukemiaChildhood Central Nervous System Germ Cell Tumor24 more

This phase I trial is studying the side effects and best dose of FR901228 in treating children with refractory or recurrent solid tumors or leukemia. Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die

Completed55 enrollment criteria

Flavopiridol in Treating Children With Relapsed or Refractory Solid Tumors or Lymphomas

Recurrent Childhood Brain Stem GliomaRecurrent Childhood Cerebellar Astrocytoma21 more

Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die. Phase I trial to study the effectiveness of flavopiridol in treating children who have relapsed or refractory solid tumors or lymphoma.

Completed48 enrollment criteria

Correlation Between Psychological Stress and Progression of Diffuse Astrocytoma Towards Secondary...

Astrocytoma

It is a single-center, prospective, observational, non-randomized study of newly diagnosed diffuse astrocytoma patients conducted in a tertiary hospital. The investigators conduct an eight-year follow-up, including patients' psychological stress, immune biomarker changes, quality of life, and disease progression of patients towards secondary glioma after the first definite diagnosis. In the first year after diagnosis, patients are followed up four times at 1 month, 3 months, 6 months, and 12 months. After that, patients are followed up semiannually. The study had two cohorts, a high-stress cohort and a low-stress cohort, which are grouped after initial recruitment. Both groups undergo total resection of tumors and received 3 months of standardized treatment with radiotherapy and chemotherapy. Neither participants nor doctors but the researcher can choose which group participants are in. No one knows if one study group is better or worse than the other.

Not yet recruiting10 enrollment criteria

DC Migration Study for Newly-Diagnosed GBM

GlioblastomaAstrocytoma3 more

This randomized phase II study will assess the impact of pre-conditioning on migration and survival among newly diagnosed glioblastoma (GBM) patients who have undergone definitive resection and completed standard temozolomide (TMZ) and radiation treatment, as well as the impact of tetanus pre-conditioning and basiliximab together on survival. After completing standard of care radiotherapy with concurrent TMZ, patients will be randomized to 1 of 3 treatment arms: 1). receive cytomegalovirus (CMV)-specific dendritic cell (DC) vaccines with unpulsed (not loaded) DC pre-conditioning prior to the 4th vaccine; 2). receive CMV-specific DC vaccines with Tetanus-Diphtheria Toxoid (Td) pre-conditioning prior to the 4th vaccine; 3). receive basiliximab infusions prior to the 1st and 2nd DC vaccines along with Td pre-conditioning prior to the 4th vaccine. A permuted block randomization algorithm using a 1:1:1 allocation ratio will be used to assign patients to a treatment arm. Randomization will be stratified by CMV status (positive, negative), with the assignment to arms I and II being double-blinded. Effective March 2017, randomization to Group III has been terminated.

Completed28 enrollment criteria

Wild-Type Reovirus in Combination With Sargramostim in Treating Younger Patients With High-Grade...

Childhood AstrocytomaChildhood Atypical Teratoid/Rhabdoid Tumor8 more

This phase I trial studies the side effects and the best dose of wild-type reovirus (viral therapy) when given with sargramostim in treating younger patients with high grade brain tumors that have come back or that have not responded to standard therapy. A virus, called wild-type reovirus, which has been changed in a certain way, may be able to kill tumor cells without damaging normal cells. Sargramostim may increase the production of blood cells and may promote the tumor cell killing effects of wild-type reovirus. Giving wild-type reovirus together with sargramostim may kill more tumor cells.

Completed49 enrollment criteria

Phase I Study of Safety and Immunogenicity of ADU-623

Astrocytic TumorsGlioblastoma Multiforme2 more

This is a study for patients with brain tumors called astrocytic tumors. The study will enroll patients who have received standard treatment. The study will test a vaccine called ADU-623. ADU-623 has not been tested in humans before, so the goal of this study is to see if ADU-623 can be given safely to brain cancer patients and what is the better dose to give patients among the three doses that planned to be tested. This study will also evaluate the length of time before patients' cancer worsens and if ADU-623 helps patients to live longer. The study will also measure the body's immune system response to ADU-623.

Completed29 enrollment criteria

Dendritic Cell (DC) Vaccine for Malignant Glioma and Glioblastoma

Malignant GliomaGlioblastoma Multiforme2 more

The purpose of this research study is to evaluate an investigational vaccine using patent-derived dendritic cells (DC) to treat malignant glioma or glioblastoma.

Completed29 enrollment criteria

Genetically Modified Neural Stem Cells, Flucytosine, and Leucovorin for Treating Patients With Recurrent...

Adult Anaplastic AstrocytomaAdult Anaplastic Oligodendroglioma5 more

This phase I trial studies the side effects and determines the best dose of genetically modified neural stem cells and flucytosine when given together with leucovorin for treating patients with recurrent high-grade gliomas. Neural stem cells can travel to sites of tumor in the brain. The neural stem cells that are being used in this study were genetically modified express the enzyme cytosine deaminase (CD), which converts the prodrug flucytosine (5-FC) into the chemotherapy agent 5-fluorouracil (5-FU). Leucovorin may help 5-FU kill more tumor cells. The CD-expressing neural stem cells are administered directly into the brain. After giving the neural stem cells a few days to spread out and migrate to tumor cells, research participants take a 7 day course of oral 5-FC. (Depending on when a research participant enters the study, they may also be given leucovorin to take with the 5-FC.) When the 5-FC crosses into brain, the neural stem cells convert it into 5-FU, which diffuses out of the neural stem cells to preferentially kill rapidly dividing tumor cells while minimizing toxicity to healthy tissues. A Rickham catheter, placed at the time of surgery, will be used to administer additional doses of NSCs every two weeks, followed each time by a 7 day course of oral 5-FC (and possibly leucovorin). This neural stem cell-based anti-cancer strategy may be an effective treatment for high-grade gliomas. Funding Source - FDA OOPD

Completed31 enrollment criteria

Vaccine Therapy With or Without Sirolimus in Treating Patients With NY-ESO-1 Expressing Solid Tumors...

Anaplastic AstrocytomaAnaplastic Oligoastrocytoma63 more

This phase I trial studies the side effects and best schedule of vaccine therapy with or without sirolimus in treating patients with cancer-testis antigen (NY-ESO-1) expressing solid tumors. Biological therapies, such as sirolimus, may stimulate the immune system in different ways and stop tumor cells from growing. Vaccines made from a person's white blood cells mixed with tumor proteins may help the body build an effective immune response to kill tumor cells that express NY-ESO-1. Infusing the vaccine directly into a lymph node may cause a stronger immune response and kill more tumor cells. It is not yet known whether vaccine therapy works better when given with or without sirolimus in treating solid tumors.

Completed49 enrollment criteria
1...202122...37

Need Help? Contact our team!


We'll reach out to this number within 24 hrs