HER2-specific CAR T Cell Locoregional Immunotherapy for HER2-positive Recurrent/Refractory Pediatric...
Central Nervous System TumorPediatric8 moreThis is a Phase 1 study of central nervous system (CNS) locoregional adoptive therapy with autologous CD4 and CD8 T cells lentivirally transduced to express a HER2-specific chimeric antigen receptor (CAR) and EGFRt, delivered by an indwelling catheter in the tumor resection cavity or ventricular system in children and young adults with recurrent or refractory HER2-positive CNS tumors. A child or young adult with a refractory or recurrent CNS tumor will have their tumor tested for HER2 expression by immunohistochemistry (IHC) at their home institution or at Seattle Children's Hospital. If the tumor is HER2 positive and the patient meets all other eligibility criteria, including having a CNS catheter placed into the tumor resection cavity or into their ventricular system, and meets none of the exclusion criteria, then they can be apheresed, meaning T cells will be collected. The T cells will then be bioengineered into a second-generation CAR T cell that targets HER2-expressing tumor cells. The patient's newly engineered T cells will then be administered via the indwelling CNS catheter for two courses. In the first course they will receive a weekly dose of CAR T cells for three weeks, followed by a week off, an examination period, and then another course of weekly doses for three weeks. Following the two courses, patient's will undergo a series of studies including MRI to evaluate the effect of the CAR T cells and may have the opportunity to continue receiving additional courses of CAR T cells if the patient has not had adverse effects and if more of their T cells are available. The hypothesis is that an adequate amount of HER2-specific CAR T cells can be manufactured to complete two courses of treatment with three doses given on a weekly schedule followed by one week off in each course. The other hypothesis is that HER-specific CAR T cells safely can be administered through an indwelling CNS catheter to allow the T cells to directly interact with the tumor cells for each patient enrolled on the study safely can be delivered directly into the brain via indwelling catheter. Secondary aims of the study will include to evaluate CAR T cell distribution with the cerebrospinal fluid (CSF), the extent to which CAR T cells egress or traffic into the peripheral circulation or blood stream, and, if tissues samples from multiple time points are available, also evaluate the degree of HER2 expression at diagnosis versus at recurrence.
Study of B7-H3-Specific CAR T Cell Locoregional Immunotherapy for Diffuse Intrinsic Pontine Glioma/Diffuse...
Central Nervous System TumorDiffuse Intrinsic Pontine Glioma11 moreThis is a Phase 1 study of central nervous system (CNS) locoregional adoptive therapy with autologous CD4+ and CD8+ T cells lentivirally transduced to express a B7H3-specific chimeric antigen receptor (CAR) and EGFRt. CAR T cells are delivered via an indwelling catheter into the tumor resection cavity or ventricular system in children and young adults with diffuse intrinsic pontine glioma (DIPG), diffuse midline glioma (DMG), and recurrent or refractory CNS tumors. A child or young adult meeting all eligibility criteria, including having a CNS catheter placed into the tumor resection cavity or into their ventricular system, and meeting none of the exclusion criteria, will have their T cells collected. The T cells will then be bioengineered into a second-generation CAR T cell that targets B7H3-expressing tumor cells. Patients will be assigned to one of 3 treatment arms based on location or type of their tumor. Patients with supratentorial tumors will be assigned to Arm A, and will receive their treatment into the tumor cavity. Patients with either infratentorial or metastatic/leptomeningeal tumors will be assigned to Arm B, and will have their treatment delivered into the ventricular system. The first 3 patients enrolled onto the study must be at least 15 years of age and assigned to Arm A or Arm B. Patients with DIPG will be assigned to Arm C and have their treatment delivered into the ventricular system. The patient's newly engineered T cells will be administered via the indwelling catheter for two courses. In the first course patients in Arms A and B will receive a weekly dose of CAR T cells for three weeks, followed by a week off, an examination period, and then another course of weekly doses for three weeks. Patients in Arm C will receive a dose of CAR T cells every other week for 3 weeks, followed by a week off, an examination period, and then dosing every other week for 3 weeks. Following the two courses, patients in all Arms will undergo a series of studies including MRI to evaluate the effect of the CAR T cells and may have the opportunity to continue receiving additional courses of CAR T cells if the patient has not had adverse effects and if more of their T cells are available. The hypothesis is that an adequate amount of B7H3-specific CAR T cells can be manufactured to complete two courses of treatment with 3 or 2 doses given on a weekly schedule followed by one week off in each course. The other hypothesis is that B7H3-specific CAR T cells can safely be administered through an indwelling CNS catheter or delivered directly into the brain via indwelling catheter to allow the T cells to directly interact with the tumor cells for each patient enrolled on the study. Secondary aims of the study will include evaluating CAR T cell distribution with the cerebrospinal fluid (CSF), the extent to which CAR T cells egress or traffic into the peripheral circulation or blood stream, and, if tissues samples from multiple timepoints are available, also evaluate disease response to B7-H3 CAR T cell locoregional therapy.
Phase I Study of Oral ONC206 in Recurrent and Rare Primary Central Nervous System Neoplasms
Central Nervous System NeoplasmsGlioblastoma25 moreThe primary objective of this phase 1 trial is to determine the maximum tolerated dose (MTD), food effect, safety and tolerability of oral ONC206 in patients with recurrent, primary CNS neoplasms.
EGFR806-specific CAR T Cell Locoregional Immunotherapy for EGFR-positive Recurrent or Refractory...
Central Nervous System TumorPediatric8 moreThis is a Phase 1 study of central nervous system (CNS) locoregional adoptive therapy with autologous CD4+ and CD8+ T cells that are lentivirally transduced to express an EGFR806 specific chimeric antigen receptor (CAR) and EGFRt. CAR T cells are delivered via an indwelling catheter into the tumor cavity or the ventricular system in children and young adults with recurrent or refractory EGFR-positive CNS tumors. The primary objectives of this protocol are to evaluate the feasibility, safety, and tolerability of CNS-delivered fractionated CAR T cell infusions employing intra-patient dose escalation. Subjects with supratentorial tumors will receive sequential EGFR806-specific CAR T cells delivered into the tumor resection cavity, subjects with infratentorial tumors will receive sequential CAR T cells delivered into the fourth ventricle, and subjects with leptomeningeal disease will receive sequential CAR T cells delivered into the lateral ventricle. The secondary objectives are to assess CAR T cell distribution within the cerebrospinal fluid (CSF), the extent to which CAR T cells egress into the peripheral circulation, and EGFR expression at recurrence of initially EGFR-positive tumors. Additionally, tumor response will be evaluated by magnetic resonance imaging (MRI) and CSF cytology. The exploratory objectives are to analyze CSF specimens for biomarkers of anti-tumor CAR T cell presence and functional activity.
SJDAWN: St. Jude Children's Research Hospital Phase 1 Study Evaluating Molecularly-Driven Doublet...
Anaplastic AstrocytomaAnaplastic Ependymoma83 moreApproximately 90% of children with malignant brain tumors that have recurred or relapsed after receiving conventional therapy will die of disease. Despite this terrible and frustrating outcome, continued treatment of this population remains fundamental to improving cure rates. Studying this relapsed population will help unearth clues to why conventional therapy fails and how cancers continue to resist modern advances. Moreover, improvements in the treatment of this relapsed population will lead to improvements in upfront therapy and reduce the chance of relapse for all. Novel therapy and, more importantly, novel approaches are sorely needed. This trial proposes a new approach that evaluates rational combination therapies of novel agents based on tumor type and molecular characteristics of these diseases. The investigators hypothesize that the use of two predictably active drugs (a doublet) will increase the chance of clinical efficacy. The purpose of this trial is to perform a limited dose escalation study of multiple doublets to evaluate the safety and tolerability of these combinations followed by a small expansion cohort to detect preliminary efficacy. In addition, a more extensive and robust molecular analysis of all the participant samples will be performed as part of the trial such that we can refine the molecular classification and better inform on potential response to therapy. In this manner the tolerability of combinations can be evaluated on a small but relevant population and the chance of detecting antitumor activity is potentially increased. Furthermore, the goal of the complementary molecular characterization will be to eventually match the therapy with better predictive biomarkers. PRIMARY OBJECTIVES: To determine the safety and tolerability and estimate the maximum tolerated dose/recommended phase 2 dose (MTD/RP2D) of combination treatment by stratum. To characterize the pharmacokinetics of combination treatment by stratum. SECONDARY OBJECTIVE: To estimate the rate and duration of objective response and progression free survival (PFS) by stratum.
Busulfan, Melphalan, Topotecan Hydrochloride, and a Stem Cell Transplant in Treating Patients With...
Solid TumorAdult Central Nervous System Germ Cell Tumor30 moreRATIONALE: Giving high-dose chemotherapy before an autologous stem cell transplant stops the growth of tumor cells by stopping them from dividing or killing them. Giving colony-stimulating factors, such as G-CSF, helps stem cells move from the bone marrow to the blood so they can be collected and stored. Chemotherapy is then given to prepare the bone marrow for the stem cell transplant. The stem cells are then returned to the patient to replace the blood-forming cells that were destroyed by the chemotherapy. PURPOSE: This clinical trial is studying how well giving busulfan, melphalan, and topotecan hydrochloride together with a stem cell transplant works in treating patients with newly diagnosed or relapsed solid tumor.
Proton Beam Radiotherapy for Medulloblastoma and Pineoblastoma
Brain TumorMedulloblastoma1 moreThere are two types of external radiation treatments (proton beam and photon beam). As part of the participant's treatment, they will receive radiation to the entire central nervous system (CNS); this is known as craniospinal irradiation (CSI). In the past, photon radiation therapy has been used for CSI. In this study we will be examining the effects of proton beam radiation therapy. Studies have suggested that this kind of radiation can cause less damage to normal tissue than photon radiation therapy. The physical characteristics of proton beam radiation let the doctor safely deliver the amount of radiation delivered to the tumor that is normally delivered through standard therapy but spare more normal tissue in the process.
International PPB/DICER1 Registry
Pleuropulmonary BlastomaSertoli-Leydig Cell Tumor13 morePleuropulmonary blastoma (PPB) is a rare malignant neoplasm of the lung presenting in early childhood. Type I PPB is a purely cystic lesion, Type II is a partially cystic, partially solid tumor, Type III is a completely solid tumor. Treatment of children with PPB is at the discretion of the treating institution. This study builds off of the 2009 study and will also seek to enroll individuals with DICER1-associated conditions, some of whom may present only with the DICER1 gene mutation, which will help the Registry understand how these tumors and conditions develop, their clinical course and the most effective treatments.
Observational Study for Assessing Treatment and Outcome of Patients With Primary Brain Tumours Using...
GliomaGlioneuronal Tumor12 moreEvery new classification depends on its prognostic power and on the type of treatment given. With the rapid evolution of diagnostic methods and the advance in new treatments, there is much less reliable information available on how patients with newly defined brain tumour entities should be treated and what to expect from the current treatments. The goal is to determine whether the new 2021 WHO classification, based on cIMPACT-NOW recommendations, results in more homogeneous patient groups than the old 2016 classification. Furthermore, it will help derive provisional guidelines on how patients with these newly defined tumour entities are best treated. These recommendations will be based on the experience of EORTC investigators with chosen treatments and their experience as reported in this data collection report.
Gamma-Secretase Inhibitor RO4929097 in Treating Young Patients With Relapsed or Refractory Solid...
Childhood Atypical Teratoid/Rhabdoid TumorChildhood Central Nervous System Choriocarcinoma45 moreThis phase I/II clinical trial is studying the side effects and best dose of gamma-secretase inhibitor RO4929097 and to see how well it works in treating young patients with relapsed or refractory solid tumors, CNS tumors, lymphoma, or T-cell leukemia. Gamma-secretase inhibitor RO4929097 may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.