
Veliparib and Temozolomide in Treating Patients With Acute Leukemia
Acute Lymphoblastic LeukemiaAcute Myeloid Leukemia14 moreThis phase I clinical trial is studies the side effects and best dose of giving veliparib together with temozolomide in treating patients with acute leukemia. Veliparib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving veliparib together with temozolomide may kill more cancer cells.

Evaluation of Adjuvant Hormonal Treatment for 24 Months After Radical Prostatectomy in High Risk...
MetastasesPRINCIPAL OBJECTIVE: Evaluation of effectiveness in terms of survival without metastases to 10 years, of adjuvant hormonal treatment with leuprorelin acetate (Eligard® 45 mg) for 24 months after radical prostatectomy in patients with high risk of recurrence. SECONDARY OBJECTIVE(S): PSA evolution Evaluation of testosterone level Specific survival Overall survival Tolerance Quality of life (QLQ-C30 questionnaires)

Navitoclax and Sorafenib Tosylate in Treating Patients With Relapsed or Refractory Solid Tumors...
CirrhosisHepatitis B Infection7 moreThis phase I trial studies the side effects and the best dose of navitoclax when given together with sorafenib tosylate in treating patients with solid tumors that have returned (relapsed) or do not respond to treatment (refractory). Navitoclax and sorafenib tosylate may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

Reirradiation With Pembrolizumab in Locoregional Inoperable Recurrence or Second Primary Squamous...
Recurrent Head and Neck CancerCarcinoma1 moreEligible participants with locoregional inoperable recurrence or second primary squamous cell carcinoma of the head and neck will be treated with reirradiation combined with anti-PD-1 mAb MK-3475 (generic name: pembrolizumab, trade name Keytruda®).

Selective Depletion of CD45RA+ T Cells From Allogeneic Peripheral Blood Stem Cell Grafts From HLA-Matched...
Accelerated Phase Chronic Myelogenous LeukemiaBCR-ABL1 Positive24 moreThis phase II trial is for patients with acute lymphocytic leukemia, acute myeloid leukemia, myelodysplastic syndrome or chronic myeloid leukemia who have been referred for a peripheral blood stem cell transplantation to treat their cancer. In these transplants, chemotherapy and total-body radiotherapy ('conditioning') are used to kill residual leukemia cells and the patient's normal blood cells, especially immune cells that could reject the donor cells. Following the chemo/radiotherapy, blood stem cells from the donor are infused. These stem cells will grow and eventually replace the patient's original blood system, including red cells that carry oxygen to our tissues, platelets that stop bleeding from damaged vessels, and multiple types of immune-system white blood cells that fight infections. Mature donor immune cells, especially a type of immune cell called T lymphocytes (or T cells) are transferred along with these blood-forming stem cells. T cells are a major part of the curative power of transplantation because they can attack leukemia cells that have survived the chemo/radiation therapy and also help to fight infections after transplantation. However, donor T cells can also attack a patient's healthy tissues in an often-dangerous condition known as Graft-Versus-Host-Disease (GVHD). Drugs that suppress immune cells are used to decrease the severity of GVHD; however, they are incompletely effective and prolonged immunosuppression used to prevent and treat GVHD significantly increases the risk of serious infections. Removing all donor T cells from the transplant graft can prevent GVHD, but doing so also profoundly delays infection-fighting immune reconstitution and eliminates the possibility that donor immune cells will kill residual leukemia cells. Work in animal models found that depleting a type of T cell, called naïve T cells or T cells that have never responded to an infection, can diminish GVHD while at least in part preserving some of the benefits of donor T cells including resistance to infection and the ability to kill leukemia cells. This clinical trial studies how well the selective removal of naïve T cells works in preventing GVHD after peripheral blood stem cell transplants. This study will include patients conditioned with high or medium intensity chemo/radiotherapy who can receive donor grafts from related or unrelated donors.

Lenalidomide and Ibrutinib in Treating Patients With Relapsed or Refractory B-Cell Non-Hodgkin Lymphoma...
Recurrent Diffuse Large B-Cell LymphomaRecurrent Follicular Lymphoma7 moreThis phase I trial studies the side effects and best dose of lenalidomide and ibrutinib in treating patients with B-cell non-Hodgkin lymphoma that has returned (relapsed) or not responded to treatment (refractory). Lenalidomide help shrink or slow the growth of non-Hodgkin lymphoma. Ibrutinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving lenalidomide with ibrutinib may work better in treating non-Hodgkin lymphoma than giving either drug alone.

Chemotherapy With or Without Bevacizumab in Treating Patients With Recurrent or Metastatic Head...
Neck Squamous Cell Carcinoma of Unknown PrimaryRecurrent Hypopharyngeal Squamous Cell Carcinoma33 moreThis randomized phase III trial studies chemotherapy to see how well it works with or without bevacizumab in treating patients with head and neck squamous cell carcinoma that has come back (recurrent) or that has spread to other parts of the body (metastatic). Drugs used in chemotherapy, such as docetaxel, cisplatin, carboplatin, and fluorouracil, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Monoclonal antibodies, such as bevacizumab, may interfere with the ability of tumor cells to grow and spread. Bevacizumab may also make tumor cells more sensitive to chemotherapy and stop the growth of head and neck cancer by blocking blood flow to the tumor. It is not yet known whether combination chemotherapy is more effective when given with or without bevacizumab in treating patients with head and neck squamous cell carcinoma.

Veliparib and Topotecan With or Without Carboplatin in Treating Patients With Relapsed or Refractory...
Adult Acute Megakaryoblastic LeukemiaAdult Acute Monoblastic Leukemia23 moreThis phase I trial is studying the side effects and best dose of veliparib when given together with topotecan hydrochloride with or without carboplatin in treating patients with relapsed or refractory acute leukemia, high-risk myelodysplasia, or aggressive myeloproliferative disorders. Veliparib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as topotecan hydrochloride and carboplatin, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving veliparib together with topotecan hydrochloride and carboplatin may kill more cancer cells.

Busulfan, Melphalan, Topotecan Hydrochloride, and a Stem Cell Transplant in Treating Patients With...
Solid TumorAdult Central Nervous System Germ Cell Tumor30 moreRATIONALE: Giving high-dose chemotherapy before an autologous stem cell transplant stops the growth of tumor cells by stopping them from dividing or killing them. Giving colony-stimulating factors, such as G-CSF, helps stem cells move from the bone marrow to the blood so they can be collected and stored. Chemotherapy is then given to prepare the bone marrow for the stem cell transplant. The stem cells are then returned to the patient to replace the blood-forming cells that were destroyed by the chemotherapy. PURPOSE: This clinical trial is studying how well giving busulfan, melphalan, and topotecan hydrochloride together with a stem cell transplant works in treating patients with newly diagnosed or relapsed solid tumor.

Etigilimab and Nivolumab for the Treatment of Platinum-Resistant Recurrent Clear Cell Ovarian, Primary...
Recurrent Fallopian Tube Clear Cell AdenocarcinomaRecurrent Ovarian Clear Cell Adenocarcinoma4 moreThis phase II trial the side effects and possible benefits of etigilimab and nivolumab in treating patients with platinum-resistant clear cell ovarian, primary peritoneal, or fallopian tube cancer that has come back (recurrent). Immunotherapy with monoclonal antibodies, such as etigilimab and nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. The goal of this clinical trial is to learn if adding etigilimab to nivolumab therapy can help to control clear cell ovarian, fallopian tube, and primary peritoneal cancers that are resistant to platinum-based therapy.