search

Active clinical trials for "Muscle Spasticity"

Results 1-10 of 546

Focal Muscular Vibration in Patients With Severe Acquired Brain Injury

Brain InjuriesSpasticity1 more

Severe acquired brain injury (sABI) is a group of disorders that cause long-term disability. Rehabilitation is essential to counteract bed immobilization, muscle failure, pain, and sensory deficits that can affect the clinical and rehabilitation pathway of these patients. Focal muscle vibration (FMV) is a tool that uses low-amplitude, high-frequency vibrations that when applied to muscle-tendon units. This technique, administered at specific frequencies, amplitudes and durations, can generate action potentials of the same frequency as the stimulus applied to the muscle or tendon. This makes it possible to activate selected afferent fibers and stimulate targeted brain areas with persistent effects over time (long-term potentiation). Regarding the effect of counteracting vibration spasticity, FMV is able to inhibit the reflex arc and induce reciprocal inhibition of functional agonist muscle. In addition, the strong proprioceptive stimulus generated by vibration is able to reach the primary motor and somatosensory cortex, enhancing cortical mechanisms that regulate co-contraction between agonist and antagonist muscles, thereby reducing muscle tone and joint stiffness. In many studies, this technique has been shown to be effective in reducing pain and joint stiffness by improving muscle contraction and motor control.

Recruiting10 enrollment criteria

Lateral Cord Magnetic Stimulation For Refractory Spastic Cerebral Palsy

Spastic Cerebral PalsyDysarthria

Lateral cord stimulation (LCS) was discovered by the author as the producer of an average threshold increase for abnormal muscle contraction responses, in experimental pathological conditions, as described and referred. This physiological effect is proposed to improve tone, motor function and speech, in patients with spasticity of different causes, such as cerebrovascular accident, congenital brain malformations, perinatal anoxia (image called cerebral palsy), sequels of neurosurgery, etc. Due to its non-invasiveness and possible efficacy, the use of magnetic stimulation is proposed to try to demonstrate its therapeutic utility. This is the clinical test of phase 2/3 of the method, in the future, and how its use could be extended, if the results were positive, its indications could be extended to other pathological conditions, giving a greater spectrum of spastic patients, potentially benefited

Recruiting16 enrollment criteria

Neck-Trunk Stabilization Exercises and Bobath Therapy Spastic Diplegic Cerebral Palsy

Cerebral Palsy Spastic Diplegia

Physiotherapy is widely used in the treatment of children with cerebral palsy. This study is conducted to identify the most appropriate physiotherapy approach. The purpose of the study is to compare two physical rehabilitation strategies i.e., Neck-trunk stabilization exercises and Bobath therapy, to investigate their effectiveness on trunk control and upper limb function. The aims of treatment are to influence muscle tone and improve postural alignment by specific handling technique.

Recruiting10 enrollment criteria

Effectiveness of Aquatic Theraphy in Spasticity: Watsu and Halliwick

Brain-injury

Treatment with ACD patients will be carried out through the application of aquatic therapies, being the Halliwick Concept and the Watsu Method together with a time of immersion in hot water.

Recruiting7 enrollment criteria

A Study to Compare the Safety and Efficacy of Dysport® and Botox® in Adults With Upper Limb Spasticity....

Upper Limb Spasticity

This study is aiming to demonstrate the non-inferiority of AbobotulinumtoxinA (aboBoNT-A) versus OnabotulinumtoxinA (onaBoNT-A) as the primary safety endpoint, and the superiority of aboBoNT-A over onaBoNT-A with respect to duration of response as the key secondary efficacy endpoint when used at optimal doses according to approved prescribing information of each product.

Recruiting24 enrollment criteria

Priming Effects of Ultra-high Frequency Quattro Pulse Transcranial Brain Stimulation Prior to Hand...

Cerebral PalsySpastic2 more

Unilateral spastic cerebral palsy (USCP) leads to life-long impairment with a hemiparesis of the affected side of the body. Rehabilitation efforts combine evidence based methods such as constrained induced movement therapy (CIMT) or hand-arm bimanual intensive therapy (HABIT) as well as training in daily life activities and psychological support in order to improve participation. It has been tried to enhance hand motor function trainings with non-invasive brain stimulation. However, evidence of this promising approach is limited. This might be due to a non-consideration of the individually different types of cortico-spinal projections to the paretic hand that demonstrated to be of highly relevant for the therapy of these children. Approximately one third of such patients control their paretic hands via crossed projections from the affected hemisphere (CONTRA), while one third uses ipsilateral projections from the contralesional hemisphere (IPSI). This study aims - for the first time - to enhance the effects of the training by priming the primary motor cortex (M1) of the paretic hand with a newly established high frequency quadri-pulse theta burst stimulation (qTBS) in a randomized, patient and evaluator blind, sham-controlled approach, for the first time taking the individual type of cortico-spinal reorganization (CONTRA vs IPSI) into account. This promising and neurophysiologically motivated approach is likely to ameliorate hand function in children with USCP.

Recruiting12 enrollment criteria

miR-142-3p as Potential Biomarker of Synaptopathy in MS

Multiple SclerosisSpasticity

Inflammatory synaptopathy is a prominent pathogenic mechanism in multiple sclerosis (MS) and in its mouse model, which can cause excitotoxic damage by long-lasting excessive synaptic excitation and, consequentially, drives disease progression by leading to motor and cognitive deficits. As synaptopathy occurs early during the disease course and is potentially reversible, it represents an appealing therapeutic target in MS. Although reliable biomarkers of MS synaptopathy are still missing, recent researches highlighted miR-142-3p as a possible candidate. Indeed, miR-142-3p has been described to promote the IL-1beta-dependent synaptopathy by downregulating GLAST/EAAT1, a crucial glial transporter involved in glutamate homeostasis. Furthermore, mir-142-3p has been suggested as a putative negative MS prognostic factor and a target of current MS disease modifying therapies. The hypothesis of this study is that miR-142-3p represents a good biomarker for excitotoxic synaptopathy to predict MS course, and, possibly, treatment efficacy at individual level, including both pharmacological strategies and non-pharmacological interventions, like therapeutic transcranial magnetic stimulation (TMS) to ameliorate MS spasticity. To this aim, the role of miR-142-3p in MS synaptopathy, its potential impact on the efficacy of disease-modifying treatments currently used in MS therapy as well as the influence of genetic variants (SNPs) of miR-142-3p and GLAST/EAAT1 coding genes on the responsiveness to therapeutic TMS, will be further investigated in the study. By validating miR-142-3p as potential biomarker of synaptopathy, it is expect to improve MS prognosis and personalized therapies. Patients with MS, who will undergo neurological assessment, conventional brain MRI scan, and CSF and blood withdrawal for diagnostic and clinical reasons at the Neurology Unit of IRCCS INM-Neuromed will be enrolled in the study. Neurophysiological, biochemical and genetic parameters together with lower limb spasticity will be evaluated. Subjects, who will undergo blood sampling and/or lumbar puncture for clinical suspicions, later on not confirmed, will be recruited as control group. A subgroup of MS patients showing lower limb spasticity will be included in a two-week repetitive TMS stimulation protocol (iTBS) to correlate the patient responsiveness to this non-pharmacological treatment with MS-significant SNPs of both miR-142-3p and GLAST/EAAT1 coding genes.

Recruiting14 enrollment criteria

Melpida: Recombinant Adeno-associated Virus (Serotype 9) Encoding a Codon Optimized Human AP4M1...

SpasticityMuscle5 more

MELPIDA is proposed for the treatment of subjects with SPG50 and targets neuronal cells to deliver a fully functional human AP4M1 cDNA copy via intrathecal injection to counter the associated neuronal loss. Outcomes will evaluate the safety and tolerability of a single dose of MELPIDA, which will be measured by the treatment-associated adverse events (AEs) and serious adverse events (SAEs). Secondarily, the trial will explore efficacy in terms of disease burden assessments.

Recruiting23 enrollment criteria

Activating Spinal Circuits to Improve Walking, Balance, Strength, and Reduce Spasticity

Incomplete Spinal Cord InjurySpasticity1 more

For many people with spinal cord injury (SCI), the goal of walking is a high priority. There are many approaches available to restore walking function after SCI; however, these approaches often involve extensive rehabilitation training and access to facilities, qualified staff, and advanced technology that make practicing walking at home difficult. For this reason, developing training approaches that could be easily performed in the home would be of great value. In addition, non-invasive spinal stimulation has the potential to increase the effectiveness of communication between the brain and spinal cord. Combining motor skill training (MST) with transcutaneous spinal stimulation (TSS) may further enhance the restoration of function in persons with SCI. Therefore, the purpose of this study is to determine if moderate-intensity, MST can improve walking-related outcomes among persons with SCI and to determine if the addition of non-invasive TSS will result in greater improvements in function compared to training alone.

Recruiting18 enrollment criteria

Extracorporeal Shockwave Therapy for Spasticity in People With Spinal Cord Injury

Spinal Cord InjuriesSpasticity6 more

People with spinal cord injury (SCI) experience a host of secondary complications that can impact their quality of life and functional independence. One of the more prevalent complications is spasticity, which occurs in response to spinal cord damage and the resulting disruption of motor pathways. Common symptoms include spasms and stiffness, and can occur more than once per hour in many people with SCI. Spasticity can have a negative impact over many quality of life domains, including loss of functional independence, activity limitations, and even employment. Its impact on health domains is also pronounced, with many people who have spasticity reporting mood disorders, depression, pain, sleep disturbances, and contractures. Spasticity can interfere with post-injury rehabilitation and lead to hospitalization. There are many treatments for spasticity in this population. However, many do not have long-term efficacy, and, if they do, they are often pharmacological in nature and carry side effects that could limit function or affect health. The goal of this pilot, randomized-controlled study is to investigate the potential efficacy and safety of a non-invasive treatment with a low side effect profile, extracorporeal shockwave therapy (ESWT). ESWT has shown some benefits in people with post-stroke spasticity with no long term side effects. Thirty individuals with chronic, traumatic SCI will be recruited. Fifteen will be provided with ESWT while the other fifteen will be given a sham treatment. Clinical and self-report measures of spasticity and its impact on quality of life will be collected, as well as quantitative ultrasound measures of muscle architecture and stiffness. The ultimate goal of this pilot project is to collect the data necessary to apply for a larger randomized-controlled trial. Conducting a larger trial will allow for a more powerful estimation of safety and efficacy of ESWT as a treatment for spasticity in people with SCI.

Recruiting14 enrollment criteria
12...55

Need Help? Contact our team!


We'll reach out to this number within 24 hrs