NVG-291 in Spinal Cord Injury Subjects
Spinal Cord InjuriesChronic Spinal Cord Injury1 moreA Single site (Shirley Ryan AbilityLab) Randomized, Double-Blind, Placebo-Controlled Phase 1b/2a Study of NVG-291 in Spinal Cord Injury Subjects
Study of Individualized, Precise and Standardized Cervical Open-door Surgery for Cervical Spinal...
Cervical Spinal StenosisCervical Spinal Cord Injury2 moreTo evaluate the safety and effectiveness of individualized, precise and standardized open-door posterior cervical surgery through a single-center, exploratory clinical study, so as to provide a more reliable basis for the treatment of cervical spinal stenosis.
High Intensity Functional Training for Individuals With Neurologic Diagnoses and Their Care Partners...
Neurologic DisorderParkinson Disease6 moreIndividuals with and without neurologic diagnoses greatly benefit from participation in regular exercise but the majority are physically inactive. This is an issue for both them and their care partners as their health is often linked. This study aims to examine the long-term physical and psychosocial effects of structured, group-based, high intensity functional training (HIFT) exercise for people with neurologic diagnoses and their care partners.
Remotely Delivered Cognitive Multisensory Rehabilitation for Sensory and Motor Recovery After Spinal...
Spinal Cord InjuriesSpinal Cord DiseasesSo far, therapies have limited success in functional recovery in adults with chronic SCI. By introducing remote cognitive multisensory rehabilitation (CMR), which has shown significant functional improvements due to neurological recovery when delivered in-person, transformative results that (i) provide a potentially effective new therapy within the healthcare system, accessible to more patients, and (ii) demonstrate brain function changes alongside improved function in chronic SCI are anticipated. The results will inform and justify a large scale federally funded clinical trial.
Improving Grasp Function in People With Sensorimotor Impairments by Combining Electrical Stimulation...
StrokeSpinal Cord Injuries1 moreHand motor and sensory impairments resulting from neurological disorders or injuries affect more than 50 million individuals worldwide. Conditions such as stroke, spinal cord injury (SCI), and traumatic brain injury (TBI) can cause long-term hand impairments, greatly impacting daily activities and social integration. Since traditional physiotherapy has limited effectiveness in rehabilitation, assistive devices helping in performing in daily activities have emerged as a necessary solution. Soft exoskeletons offer advantages as they are more comfortable and adaptable for the user, but they often struggle to generate sufficient force. On the other hand, electrical stimulation garments, like e-sleeves, show promise by stimulating nerves and muscles in the forearm. However, achieving precise and stable movement control remains challenging due to difficulties in electrode placement for targeted stimulation. Furthermore, none of the currently available devices are capable of artificially restoring lost sensation in users' hands, limiting their ability to manipulate with fragile objects. Recognizing these limitations, our study proposes a solution that combines a standard hand soft exoskeleton with: (i) electrical stimulation to the fingers' flexor and extensor muscles to generate artificial muscle contractions synchronized with the exoskeleton motion, compensating for the lack of gripping force, and (ii) electrical stimulation to the nerves to artificially restore the lost sensation of touch, enabling users to receive feedback on the force they are applying when interacting with the environment. The investigators refer to this proposed combination as Sensible-Exo. To achieve this goal, our project aims to evaluate the functional improvements in assistive and rehabilitative scenarios using SensoExo in comparison to use only the exoskeleton or having no support at all. The exoskeleton will be coupled with an electrical stimulating sleeve capable of delivering non-invasive electrical stimulation in the form of Functional Electrical Stimulation (FES) and Transcutaneous Electrical Nerve Stimulation (TENS). A glove with embedded force and bending sensors will be used to modulate the electrical stimulation. Additionally, apart from studying the enhancement of functional tasks, the investigators will explore improvements in body perception, representation, and multi-sensory integration. Indeed, the investigators also aim at identifying the way patients perceive their body by means of ad-hoc virtual reality assessments that has been developed. Before each assessment patient will perform some predefined movement in virtual reality to familiarize with it and increase embodiment. During the study, participants will perform a range of tasks based on their residual abilities, including motor tasks (e.g., grab and release, Toronto Rehabilitation Institute Hand Function Test, grip force regulation test, virtual egg test), cognitive tasks (dual tasks), and assessments of body representation and perception. Some of these tasks will be conducted in Virtual Reality environments, both with and without active stimulation.
Spinal Cord Injury Neuroprotection With Glyburide
Acute Spinal Cord InjuryTo assess the safety and efficacy of using oral Glyburide (Diabeta) as a neuroprotective agent in patients with acute cervical or thoracic traumatic spinal cord injury.
Physical Therapy Wound Care Modalities in Patients With Spinal Cord Injury (SCI)
Spinal Cord InjuriesPressure InjuriesTo examine the effects of Physical Therapist (PT) wound care modalities (pulsed wound irrigation (PWI) + electrical stimulation (ES), PWI only, and ES only) on wound healing in patients with spinal cord injuries (SCI).
Effects of 4-AP on Functional SCI Recovery
Spinal Cord InjuryThe purpose of this study is to test a strategy to potentiate functional recovery of lower limb motor function in individuals with spinal cord injury (SCI). The FDA approved drug, Dalfampridine (4-AP). 4-AP will be used in combination of Spike-timing-dependent plasticity (STDP) stimulation and STDP stimulation with limb training.
Effectiveness of a Powered Exoskeleton Combined With FES for Patients With Chronic SCI: a RCT
Spinal Cord InjuriesGait Disorders1 moreWhile there are a number of prospective studies evaluating powered exoskeletons in SCI patients, to date, not a single well-designed, randomized clinical trial has been published. However, there is evidence for beneficial effects of over-ground exoskeleton therapy on walking function post-intervention from a meta-analysis on non-randomized, uncontrolled studies. Functional electrical stimulation (FES), on the other hand, is a common and established method for the rehabilitation of persons with SCI and has been demonstrated to be beneficial in, e.g., improving muscle force, power output and endurance. Combining FES and overground robotic therapy within the same therapy session could potentially merge and potentiate the effects of each separate treatment, making it a very powerful and efficient therapy method. Up to date, however, comparative studies evaluating benefits of this combined approach (i.e., powered exoskeleton and FES) to robotic therapy without FES are missing.
Brief Prolonged Exposure Therapy Versus Clinical Standard to Reduce Posttraumatic Stress Post Spinal...
Spinal Cord InjuriesPTSD1 moreThis study will examine the use brief prolonged exposure (Brief PE) therapy compared to standard clinical care to reduce posttraumatic distress among people who have had a spinal cord injury and are receiving rehabilitation in an inpatient setting.