Natural History of Spinocerebellar Ataxia Type 7 (SCA7)
Spinocerebellar AtaxiaBackground: Spinocerebellar ataxia type 7 (SCA7) is disease in which people have problems with coordination, balance, speech and vision. It is caused by a change in the ATXN7 gene. A mutation in this ATXN7 gene causes changes in eye cells, which can lead to vision loss. There is no cure for SCA7 but researchers are looking for possible treatments. Researchers need more information about SCA7. They want to collect vision and neurology related data from people with SCA7. They want to learn how and what changes in the eye and brain when the ATXN7 gene isn t working properly. Objective: To learn more about SCA7 and its progression. Eligibility: People ages 12 and older with SCA7. Design: Participants will be screened with medical history and genetic testing from a previous National Eye Institute study or their personal physician. Participants will have at least 7 visits over 5 years. They will have 2 visits during the first week of the study. Then they will be asked to come back every year for the next 5 years. Each visit will last several days and will include: Medical and eye history Several eye tests: some will include dilating the pupil with eye drops and taking photos or scans of the eyes. Electroretinography (ERG): Participants will sit in the dark with their eyes patched for 30 minutes. After this, the patches will be removed and contact lenses put into the eyes. They will watch flashing lights and information will be recorded. Neurological exams: Sensation, strength, coordination, reflexes, attention, memory, language, and other cognitive functions will be tested. Brain MRI: They will lie in a machine that takes pictures of the brain. Blood and urine tests Optional skin biopsy: About 3 millimeters of skin will be removed for more research testing; this is half the size of a pencil eraser.
Rare Disease Patient Registry & Natural History Study - Coordination of Rare Diseases at Sanford...
Rare DisordersUndiagnosed Disorders316 moreCoRDS, or the Coordination of Rare Diseases at Sanford, is based at Sanford Research in Sioux Falls, South Dakota. It provides researchers with a centralized, international patient registry for all rare diseases. This program allows patients and researchers to connect as easily as possible to help advance treatments and cures for rare diseases. The CoRDS team works with patient advocacy groups, individuals and researchers to help in the advancement of research in over 7,000 rare diseases. The registry is free for patients to enroll and researchers to access. Visit sanfordresearch.org/CoRDS to enroll.
Clinical Trial Readiness for SCA1 and SCA3
Spinocerebellar Ataxia Type 1Spinocerebellar Ataxia 3The investigators plan to fill the gap between the current state of clinical trial readiness and the optimal one for SCA1 and SCA3, which are fatal rare diseases with no treatments. Through US-European collaborations, the investigators will establish the world's largest cohorts of subjects at the earliest disease stages, who will benefit most from treatments, validate an ability to detect disease onset and early progression by imaging markers, even prior to ataxia onset, and identify clinical trial designs that will generate the most conclusive results on treatment efficacy with small populations of patients.
Identification of Biomarkers in Spinocerebellar Ataxia 3
Spinocerebellar Ataxia Type 3The purpose of this study is to examine the differences in cerebral spinal fluid (CSF) and blood of patients with spinocerebellar ataxias and healthy volunteers. The goal of this project is to identify new biomarkers that are useful for characterizing spinocerebellar ataxias and identify targets for treatment or prevention of this condition.
A Pharmacokinetics and Safety Study of BIIB132 in Adults With Spinocerebellar Ataxia 3
Spinocerebellar Ataxia Type 3The primary objective of this study is to evaluate the safety and tolerability of multiple ascending doses of BIIB132 administered via intrathecal (IT) injection to participants with spinocerebellar ataxia type 3 (SCA3). The secondary objective of this study is to characterize the multiple-dose pharmacokinetics (PK) of BIIB132 administered via IT injection to participants with SCA3.
Transcranial Alternating Current Stimulation (tACS) in Patients With Ataxia
AtaxiaSpinocerebellar Ataxias3 moreThe aim of the study is to evaluate the effects on motor and cognitive performance of transcranial alternating current stimulation (tACS) compared to transcranial direct current stimulation (tDCS) and placebo stimulation (sham) in patients with neurodegenerative ataxia to identify a possible rehabilitation protocol.
Ataxia and Exercise Disease Using MRI and Gait Analysis
AtaxiaSpino Cerebellar Degeneration1 moreThe first aim is to show balance training improves DCD individual's ability to compensate for their activity limitations, but does not impact disease progression. The second aim is to demonstrate aerobic exercise improves balance and gait in DCD persons by affecting brain processes and slowing cerebellar atrophy.
Clinical Effects of Oral Trehalose In Patients With Spinocerebellar Ataxia 3
Spinocerebellar Ataxia 3There are no clinically established treatments which have been proven to delay the disease progression in spinocerebellar ataxia (SCA) 3. Most available treatments are only for symptom alleviation, and thus the majority of patients will eventually progress to needing and wheel chair and eventually bedridden. As trehalose appear to be potentially promising treatment in SCA, the investigators aim to conduct this study using oral trehalose in our genetically confirmed SCA 3 patients.
A Confirmatory Study of KPS-0373 in Patients With Spinocerebellar Degeneration (SCD)
Spinocerebellar DegenerationThe purpose of this study is to investigate the superiority of KPS-0373 to placebo, and evaluate the safety and pharmacokinetics of KPS-0373 in SCD patients.
High-Dose Intravenous Immunoglobulin to Treat Cerebellar Degeneration
Spinocerebellar DegenerationsThis study will examine whether high-dose intravenous immunoglobulin (IVIG) is safe and effective for treating cerebellar ataxia-degeneration of the cerebellum, the part of the brain responsible for coordinating muscle movements and balance. The disease causes a slowly progressive impairment of speech and balance, with patients often developing slurred speech, tremor, clumsiness of the hands, and walking difficulties (ataxia). IVIG is derived from donated blood that has been purified, cleaned and processed into a form that can be infused. IVIG is an immune suppressant that is routinely used to treat other neurological conditions. Patients 18 years of age and older with hereditary (genetic) or sporadic (unknown cause) cerebellar degeneration may be eligible for this 5-month study. They must have evidence of an immune component to their condition, such as gluten sensitivity or antiganglioside antibodies. Candidates will be screened with a neurological examination, a review of medical records and possibly blood tests. Participants will be randomly assigned to receive infusions of either IVIG or placebo (an inactive substance) through an arm vein once a month for two months. The infusions will be given in the hospital in doses divided over 2 days, each lasting 6 to 10 hours. Before the infusions, patients will undergo ataxia assessments through tests of coordination and balance that may involve finger tapping, walking in a straight line, talking, and eye movements. When the treatment is finished, patients will be followed in the clinic once a month for 3 months for blood tests repeat ataxia assessments to evaluate the effects of treatment.