search

Active clinical trials for "Astrocytoma"

Results 51-60 of 370

A Study of Varlilumab and IMA950 Vaccine Plus Poly-ICLC in Patients With WHO Grade II Low-Grade...

GliomaMalignant Glioma7 more

This is a pilot, randomized, two arm neoadjuvant vaccine study in human leukocyte antigen-A2 positive (HLA-A2+) adults with World Health Organization (WHO) grade II glioma, for which surgical resection of the tumor is clinically indicated. Co-primary objectives are to determine: 1) the safety of the novel combination of subcutaneously administered IMA950 peptides and poly-ICLC (Hiltonol) and i.v. administered CDX-1127 (Varlilumab) in the neoadjuvant approach; and 2) whether addition of i.v. CDX-1127 (Varlilumab) increases the response rate and magnitude of CD4+ and CD8+ T-cell responses against the IMA950 peptides in post-vaccine peripheral blood mononuclear cell (PBMC) samples obtained from participating patients.

Active37 enrollment criteria

Study Of NOVOTTF-200A In Bevacizumab-Naive Subjects With Recurrent Grade III Malignant Astrocytoma...

AstrocytomaGrade III

This is a Phase 2 study in subjects with WHO Grade III Anaplastic Astrocytoma (G3 astrocytoma) who had progressive disease during first or second line treatment and who have not previously received any BEV or any experimental agents.

Active24 enrollment criteria

Study of a Drug [DCVax®-L] to Treat Newly Diagnosed GBM Brain Cancer

Glioblastoma MultiformeGlioblastoma5 more

The primary purpose of the study is to determine the efficacy of an investigational therapy called DCVax(R)-L in patients with newly diagnosed GBM for whom surgery is indicated. Patients must enter screening at a participating site prior to surgical resection of the tumor. Patients will receive the standard of care, including radiation and Temodar therapy and two out of three will additionally receive DCVax-L, with the remaining one third receiving a placebo. All patients will have the option to receive DCVax-L in a crossover arm upon documented disease progression. (note: DCVax-L when used for patients with brain cancer is sometimes also referred to as DCVax-Brain)

Active12 enrollment criteria

SJDAWN: St. Jude Children's Research Hospital Phase 1 Study Evaluating Molecularly-Driven Doublet...

Anaplastic AstrocytomaAnaplastic Ependymoma83 more

Approximately 90% of children with malignant brain tumors that have recurred or relapsed after receiving conventional therapy will die of disease. Despite this terrible and frustrating outcome, continued treatment of this population remains fundamental to improving cure rates. Studying this relapsed population will help unearth clues to why conventional therapy fails and how cancers continue to resist modern advances. Moreover, improvements in the treatment of this relapsed population will lead to improvements in upfront therapy and reduce the chance of relapse for all. Novel therapy and, more importantly, novel approaches are sorely needed. This trial proposes a new approach that evaluates rational combination therapies of novel agents based on tumor type and molecular characteristics of these diseases. The investigators hypothesize that the use of two predictably active drugs (a doublet) will increase the chance of clinical efficacy. The purpose of this trial is to perform a limited dose escalation study of multiple doublets to evaluate the safety and tolerability of these combinations followed by a small expansion cohort to detect preliminary efficacy. In addition, a more extensive and robust molecular analysis of all the participant samples will be performed as part of the trial such that we can refine the molecular classification and better inform on potential response to therapy. In this manner the tolerability of combinations can be evaluated on a small but relevant population and the chance of detecting antitumor activity is potentially increased. Furthermore, the goal of the complementary molecular characterization will be to eventually match the therapy with better predictive biomarkers. PRIMARY OBJECTIVES: To determine the safety and tolerability and estimate the maximum tolerated dose/recommended phase 2 dose (MTD/RP2D) of combination treatment by stratum. To characterize the pharmacokinetics of combination treatment by stratum. SECONDARY OBJECTIVE: To estimate the rate and duration of objective response and progression free survival (PFS) by stratum.

Active72 enrollment criteria

Study to Evaluate Eflornithine + Lomustine vs Lomustine in Recurrent Anaplastic Astrocytoma (AA)...

Anaplastic AstrocytomaRecurrent Anaplastic Astrocytoma

The purpose of this study is to compare the efficacy and safety of eflornithine in combination with lomustine, compared to lomustine taken alone, in treating patients whose anaplastic astrocytoma has recurred/progressed after radiation and temozolomide chemotherapy.

Active20 enrollment criteria

Vaccine Therapy for the Treatment of Newly Diagnosed Glioblastoma Multiforme

Glioblastoma MultiformeGlioblastoma4 more

The purpose of this research study is to determine if an investigational dendritic cell vaccine, called pp65 DC, is effective for the treatment of a specific type of brain tumor called glioblastoma (GBM) when given with stronger doses of routine chemotherapy.

Active38 enrollment criteria

Proton Radiotherapy for Pediatric Brain Tumors Requiring Partial Brain Irradiation

Brain TumorLow Grade Glioma3 more

Some patients with brain tumors receive standard radiation to help prevent tumor growth. Although standard radiation kills tumor cells, it can also damage normal tissue in the process and lead to more side effects. This research study is looking at a different form of radiation called proton radiotherapy which helps spare normal tissues while delivering radiation to the tumor or tumor bed. Proton techniques irradiate 2-3 times less normal tissue then standard radiation. This therapy has been used in treatment of other cancers and information from those other research studies suggests that this therapy may help better target brain tumors then standard radiation.

Active12 enrollment criteria

Lapatinib Ditosylate Before Surgery in Treating Patients With Recurrent High-Grade Glioma

Anaplastic AstrocytomaAnaplastic Ependymoma5 more

This pilot phase I clinical trial studies how well lapatinib ditosylate before surgery works in treating patients with high-grade glioma that has come back after a period of time during which the tumor could not be detected. Lapatinib ditosylate may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

Active40 enrollment criteria

Vorinostat, Temozolomide, or Bevacizumab in Combination With Radiation Therapy Followed by Bevacizumab...

Brain Stem GliomaCerebral Astrocytoma3 more

This randomized phase II/III trial is studying vorinostat, temozolomide, or bevacizumab to see how well they work compared with each other when given together with radiation therapy followed by bevacizumab and temozolomide in treating young patients with newly diagnosed high-grade glioma. Vorinostat may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Monoclonal antibodies, such as bevacizumab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Radiation therapy uses high-energy x-rays to kill tumor cells. It is not yet known whether giving vorinostat is more effective then temozolomide or bevacizumab when given together with radiation therapy in treating glioma.

Active56 enrollment criteria

Selumetinib in Treating Young Patients With Recurrent or Refractory Low Grade Glioma

Low Grade GliomaRecurrent Childhood Pilocytic Astrocytoma4 more

This phase I/II trial studies the side effects and the best dose of selumetinib and how well it works in treating or re-treating young patients with low grade glioma that has come back (recurrent) or does not respond to treatment (refractory). Selumetinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

Active86 enrollment criteria
1...567...37

Need Help? Contact our team!


We'll reach out to this number within 24 hrs