Fusion Protein Cytokine Therapy After Rituximab in Treating Patients With B-Cell Non-Hodgkin Lymphoma...
Anaplastic Large Cell LymphomaCutaneous B-cell Non-Hodgkin Lymphoma12 moreRATIONALE: Biological therapies, such as fusion protein cytokine therapy, may stimulate the immune system in different ways and stop cancer cells from growing. Monoclonal antibodies, such as rituximab, can block cancer growth in different ways. Some block the ability of cancer cells to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them. Giving fusion protein cytokine therapy together with rituximab may kill more cancer cells. PURPOSE: This phase I trial is studying the side effects and best dose of fusion protein cytokine therapy when given after rituximab in treating patients with B-cell non-Hodgkin lymphoma.
Panobinostat and Everolimus in Treating Patients With Recurrent Multiple Myeloma, Non-Hodgkin Lymphoma,...
Adult Nasal Type Extranodal NK/T-cell LymphomaAnaplastic Large Cell Lymphoma26 moreThis phase I/II trial studies the side effects and best dose of panobinostat and everolimus when given together and to see how well they work in treating patients with multiple myeloma, non-Hodgkin lymphoma, or Hodgkin lymphoma that has come back. Panobinostat and everolimus may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
Fludarabine Phosphate, Melphalan, Total-Body Irradiation, Donor Stem Cell Transplant in Treating...
Accelerated Phase Chronic Myelogenous LeukemiaAcute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic Syndrome100 moreThis clinical trial is studying how well giving fludarabine phosphate and melphalan together with total-body irradiation followed by donor stem cell transplant works in treating patients with hematologic cancer or bone marrow failure disorders. Giving low doses of chemotherapy and total-body irradiation before a donor peripheral blood stem cell transplant helps stop the growth of cancer cells or abnormal cells. It may also stop the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer or abnormal cells (graft-versus-tumor effect)
Tipifarnib in Treating Patients With Relapsed or Refractory Lymphoma
Anaplastic Large Cell LymphomaExtranodal Marginal Zone Lymphoma of Mucosa-Associated Lymphoid Tissue11 moreThis phase II trial studies how well tipifarnib works in treating patients with relapsed or refractory non-Hodgkin's lymphoma. Tipifarnib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Tipifarnib may be an effective treatment for non-Hodgkin's lymphoma.
17-AAG in Treating Patients With Relapsed or Refractory Anaplastic Large Cell Lymphoma, Mantle Cell...
Anaplastic Large Cell LymphomaRecurrent Adult Hodgkin Lymphoma1 moreThis phase II trial is studying how well 17-AAG works in treating patients with relapsed or refractory anaplastic large cell lymphoma, mantle cell lymphoma, or Hodgkin's lymphoma. Drugs used in chemotherapy, such as 17-AAG, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing.
Alemtuzumab, Fludarabine Phosphate, and Total-Body Irradiation Followed by Cyclosporine and Mycophenolate...
Acute Undifferentiated LeukemiaAdult Acute Lymphoblastic Leukemia in Remission64 moreThis phase II trial is studying the side effects and best dose of alemtuzumab when given together with fludarabine phosphate and total-body irradiation followed by cyclosporine and mycophenolate mofetil in treating patients who are undergoing a donor stem cell transplant for hematologic cancer. Giving low doses of chemotherapy, such as fludarabine phosphate, a monoclonal antibody, such as alemtuzumab, and radiation therapy before a donor stem cell transplant helps stop the growth of cancer cells. Giving chemotherapy or radiation therapy before or after transplant also stops the patient's immune system from rejecting the donor's bone marrow stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving cyclosporine and mycophenolate mofetil after the transplant may stop this from happening.
Haploidentical Donor Bone Marrow Transplant in Treating Patients With High-Risk Hematologic Cancer...
Accelerated Phase Chronic Myelogenous LeukemiaAdult Acute Lymphoblastic Leukemia in Remission95 moreThis phase II trial studies how well giving fludarabine phosphate, cyclophosphamide, tacrolimus, mycophenolate mofetil and total-body irradiation together with a donor bone marrow transplant works in treating patients with high-risk hematologic cancer. Giving low doses of chemotherapy, such as fludarabine phosphate and cyclophosphamide, and total-body irradiation before a donor bone marrow transplant helps stop the growth of cancer cells by stopping them from dividing or killing them. Giving cyclophosphamide after transplant may also stop the patient's immune system from rejecting the donor's bone marrow stem cells. The donated stem cells may replace the patient's immune system cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving tacrolimus and mycophenolate mofetil after the transplant may stop this from happening
506U78 in Treating Patients With Lymphoma
Anaplastic Large Cell LymphomaAngioimmunoblastic T-cell Lymphoma12 morePhase II trial to study the effectiveness of 506U78 in treating patients who have lymphoma that has not been treated previously or that has not responded to previous treatment. Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die
Combination Chemotherapy in Treating Children With Anaplastic Large Cell Lymphoma (ALCL 99)
LymphomaRATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Combining more than one drug may kill more tumor cells. It is not yet known which combination chemotherapy regimen is more effective for treating anaplastic large cell lymphoma. PURPOSE: This randomized phase III trial is studying several different regimens of combination chemotherapy to compare how well they work in treating children with anaplastic large cell lymphoma.
Interleukin-15 (IL-5) in Combination With Avelumab (Bavencio) in Relapsed/Refractory Mature T-cell...
Peripheral T-cell Lymphoma NOSMycosis Fungoides2 moreBackground: Some T-cell lymphomas and leukemias do not respond to standard treatment. Researchers hope to develop a treatment that works better than current treatments. Objective: To test if interleukin (IL-5) combined with avelumab is safe and effective for treating certain cancers. Eligibility: People ages 18 and older with relapsed T-cell leukemias and lymphomas for which no standard treatment exists or standard treatment has failed Design: Participants will be screened with: Medical history Physical exam Blood, urine, heart, and lung tests Possible tumor biopsy Bone marrow biopsy: A small needle will be inserted into the hipbone to take out a small amount of marrow. Computed tomography (CT) or positron emission tomography (PET) scans and magnetic resonance imaging (MRI): Participants will lie in a machine that takes pictures of the body. Participants will get the study drugs for 6 cycles of 28 days each. They will have a midline catheter inserted: A tube will be inserted into a vein in the upper chest. They will get Interleukin-15 (IL-5) as a constant infusion over the first 5 days of every cycle. They will get avelumab on days 8 and 22 of each cycle. They will be hospitalized for the first week of the first cycle. Participants will have tests throughout the study: Blood and urine tests Another tumor biopsy if their disease gets worse Scans every 8 weeks Possible repeat MRI Another bone marrow biopsy at the end of treatment, if there was lymphoma in the bone marrow before treatment, and they responded to treatment everywhere else. After they finish treatment, participants will have visits every 60 days for the first 6 months. Then visits will be every 90 days for 2 years, and then every 6 months for 2 years. Visits will include blood tests and may include scans.