Registry of the German CLL Study Group
CLLSLL10 moreLong term follow-up of patients with chronic lymphocytic leukemia (CLL), B-prolymphocytic leukemia (B-PLL), T-cell prolymphocytic leukemia (T-PLL), Small lymphocytic lymphoma (SLL), T/Natural Killer large granular lymphocyte leukemia (T or NK-LGL), Hairy cell leukemia (HCL) and Richter's transformation
Ruxolitinib for the Treatment of T-Cell Large Granular Lymphocytic Leukemia
T-Cell Large Granular Lymphocyte LeukemiaThis phase II trial tests whether ruxolitinib works to shrink tumors in patients with T-cell large granular lymphocyte leukemia. Ruxolitinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
Vaccine Therapy in Preventing Cytomegalovirus Infection in Patients With Hematological Malignancies...
Accelerated Phase Chronic Myelogenous LeukemiaAdult Acute Lymphoblastic Leukemia in Remission125 moreThis randomized phase I trial studies the side effects of vaccine therapy in preventing cytomegalovirus (CMV) infection in patients with hematological malignancies undergoing donor stem cell transplant. Vaccines made from a tetanus-CMV peptide or antigen may help the body build an effective immune response and prevent or delay the recurrence of CMV infection in patients undergoing donor stem cell transplant for hematological malignancies.
A Registry for People With T-cell Lymphoma
T-cell LymphomaNK-Cell Lymphoma35 moreThe purpose of this registry study is to create a database-a collection of information-for better understanding T-cell lymphoma. Researchers will use the information from this database to learn more about how to improve outcomes for people with T-cell lymphoma.
Tipifarnib in Treating Patients With Anemia or Neutropenia and Large Granular Lymphocyte Leukemia...
Stage III Chronic Lymphocytic LeukemiaStage IV Chronic Lymphocytic Leukemia1 moreThis phase II trial is studying how well tipifarnib works in treating patients with anemia or neutropenia and large granular lymphocyte leukemia. Tipifarnib may stop the growth of leukemia by blocking blood flow to the cancer cells and by blocking some of the enzymes needed for cancer cell growth.
Etoposide, Filgrastim, and Plerixafor in Improving Stem Cell Mobilization in Treating Patients With...
Adult Acute Lymphoblastic Leukemia in RemissionAdult Grade III Lymphomatoid Granulomatosis32 moreThis clinical trial studies etoposide, filgrastim and plerixafor in improving stem cell mobilization in patients with non-Hodgkin lymphoma. Giving colony-stimulating factors, such as filgrastim, and plerixafor and etoposide together helps stem cells move from the patient's bone marrow to the blood so they can be collected and stored.
Monoclonal Antibody Therapy Before Stem Cell Transplant in Treating Patients With Relapsed or Refractory...
Adult Nasal Type Extranodal NK/T-cell LymphomaAnaplastic Large Cell Lymphoma31 moreThis phase I trial studies the side effects and best dose of monoclonal antibody therapy before stem cell transplant in treating patients with relapsed or refractory lymphoid malignancies. Radiolabeled monoclonal antibodies, such as yttrium-90 anti-CD45 monoclonal antibody BC8, can find cancer cells and carry cancer-killing substances to them without harming normal cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Giving radiolabeled monoclonal antibody before a stem cell transplant may be an effective treatment for relapsed or refractory lymphoid malignancies.
Gamma-Secretase Inhibitor RO4929097 in Treating Young Patients With Relapsed or Refractory Solid...
Childhood Atypical Teratoid/Rhabdoid TumorChildhood Central Nervous System Choriocarcinoma45 moreThis phase I/II clinical trial is studying the side effects and best dose of gamma-secretase inhibitor RO4929097 and to see how well it works in treating young patients with relapsed or refractory solid tumors, CNS tumors, lymphoma, or T-cell leukemia. Gamma-secretase inhibitor RO4929097 may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
Lenalidomide With or Without Rituximab in Treating Patients With Progressive or Relapsed Chronic...
Adult Nasal Type Extranodal NK/T-cell LymphomaAnaplastic Large Cell Lymphoma32 moreThis phase II trial studies how well giving lenalidomide with or without rituximab works in treating patients with progressive or relapsed chronic lymphocytic leukemia (CLL), small lymphocytic lymphoma (SLL), prolymphocytic leukemia (PLL), or non-Hodgkin lymphoma (NHL). Biological therapies, such as lenalidomide, may stimulate the immune system in different ways and stop cancer cells from growing. Monoclonal antibodies, such as rituximab, can block cancer growth in different ways. Some block the ability of cancer to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them. Giving lenalidomide together with or without rituximab may kill more cancer cells.
Oxaliplatin, Ifosfamide and Etoposide in Treating Young Patients With Recurrent or Refractory Solid...
Angioimmunoblastic T-cell LymphomaB-cell Childhood Acute Lymphoblastic Leukemia26 moreThis phase I trial is studying the side effects and best dose of oxaliplatin and etoposide in treating young patients with recurrent or refractory solid tumors or lymphomas. Drugs used in chemotherapy, such as oxaliplatin and etoposide, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Oxaliplatin may also help etoposide work better by making cancer cells more sensitive to the drug. Giving oxaliplatin together with etoposide may kill more cancer cells.