SMART Concussion Trial: Symptom Management vs Alternative Randomized Treatment of Concussion Trial...
Mild Traumatic Brain InjuryHeadaches Posttraumatic2 moreGiven the rising rates of concussion in youth ages 10-19 and the significant proportion of young people who remain symptomatic for months following concussion, research evaluating the efficacy of multifaceted treatment options following concussion is imperative. Studies examining the efficacy of treatment strategies following concussion in children and adults are surprisingly limited, and most focus on one treatment approach, have small sample sizes, are not randomized controlled trials, and focus on individuals with prolonged recovery (months). There is a need for a multifaceted treatment trial to examine the early implementation of treatment approaches that may reduce prolonged recovery while considering the heterogeneous presentation of symptoms and patient preferences in the sub-acute stage following concussion. Randomized controlled trials that consider a multifaceted transdisciplinary approach to treatment in the early period following concussion are needed to raise the bar regarding evidence-informed management following concussion
Biofeedback for Hemianopia Vision Rehabilitation
HemianopsiaHomonymous4 morePatients with brain injury secondary to stroke, surgery, or trauma frequently suffer from homonymous hemianopia, defined as vision loss in one hemifield secondary to retro- chiasmal lesion. Classic and effective saccadic compensatory training therapies are current aim to reorganize the control of visual information processing and eye movements or, in other words, to induce or improve oculomotor adaptation to visual field loss. Patients learn to intentionally shift their eyes and, thus, their visual field border, into the area corresponding to their blind visual field. This shift brings the visual information from the blind hemifield into the seeing hemifield for further processing. Patients learn, therefore, to efficiently use their eyes "to keep the 'blind side' in sight". Biofeedback training (BT) is the latest and newest technique for oculomotor control training in cases with low vision when using available modules in the new microperimetry instruments. Studies in the literature highlighted positive benefits from using BT in a variety of central vision loss, nystagmus cases, and others.The purpose of this study is to assess systematically the impact of BT in a series of cases with hemianopia and formulate guidelines for further use of this intervention in vision rehabilitation of hemianopia cases in general.
Graded Exposure Therapy for Fear Avoidance Behaviour After Concussion
Mild Traumatic Brain InjuryConcussions are very common. Although many people recover well from concussion, some will have persistent symptoms and difficulties with daily activities. How people cope with their symptoms following concussion powerfully influences their recovery. Fear avoidance behaviour is a particularly unhelpful approach to coping, in which people perceive their pre-injury activities as unnecessarily dangerous and take great care to avoid overexertion and overstimulation. The investigators developed and pilot tested a behavioural therapy, called graded exposure therapy, to reduce fear avoidance behaviour. Our preliminary work suggested that graded exposure therapy was acceptable to patients with concussion and possibly beneficial for their recovery. The GET FAB after concussion study will assess the effectiveness of graded exposure therapy.
Benchmark Evidence Led by Latin America: Trial of Intracranial Pressure - Pediatrics
Severe Traumatic Brain InjuryNarrative: Worldwide, traumatic brain injury (TBI) is a leading cause of death and disability among children and adolescents. The Investigators aim to test whether pediatric TBI treatment guided by invasive intracranial pressure monitoring produces better patient outcomes than care guided by a protocol without invasive monitoring. Study findings will inform clinical practice in treating pediatric severe TBI globally. Focused didactic and experience-based learning opportunities will increase the research capacity of pediatric intensivists in Latin America.
Improving Anticipatory and Compensatory Postural Responses to Avoid Falls After TBI
Traumatic Brain InjuryThe purpose of this study is to assess a balance training program to see if it can be helpful to avoid falls in people who have had traumatic brain injuries (TBIs). The study will include 3 groups: TBI Intervention group , TBI Control Group, and healthy control group. TBI Intervention group - These individuals will participate in 16 anticipatory postural adjustments (APA) and compensatory postural adjustments (CPA) training sessions using the Neurocom Balance Platform. Each session will last for 1 hour. During the APA portion, participants will be provided with a visual cue on the front screen in the form of a countdown timer showing the remaining seconds to the onset of the upcoming perturbation. This information will allow an opportunity for the participant to adjust their posture to handle the upcoming perturbation in the best possible way and also train them to anticipate upcoming disturbances and execute corrective motor outputs. In CPA, after a 5 second pause, the platform will oscillate at 1 Hz, with a constant amplitude, in the anterior-posterior direction for 50 seconds, followed by an additional 5 second quiet period. The participant will wear a safety harness at all times and a spotter will be present at all times. TBI Control Group- They do not receive any intervention. healthy control group- They do not receive any intervention. All three groups will participate in two data collection sessions: Baseline and follow-up. At baseline and follow-up, we will collect functional, clinical, biomechanical, and physiological metrics. During training and data collection, a spotter will be present at all times to prevent falls and participants will be allowed as much rest as needed by them..
Improving Grasp Function in People With Sensorimotor Impairments by Combining Electrical Stimulation...
StrokeSpinal Cord Injuries1 moreHand motor and sensory impairments resulting from neurological disorders or injuries affect more than 50 million individuals worldwide. Conditions such as stroke, spinal cord injury (SCI), and traumatic brain injury (TBI) can cause long-term hand impairments, greatly impacting daily activities and social integration. Since traditional physiotherapy has limited effectiveness in rehabilitation, assistive devices helping in performing in daily activities have emerged as a necessary solution. Soft exoskeletons offer advantages as they are more comfortable and adaptable for the user, but they often struggle to generate sufficient force. On the other hand, electrical stimulation garments, like e-sleeves, show promise by stimulating nerves and muscles in the forearm. However, achieving precise and stable movement control remains challenging due to difficulties in electrode placement for targeted stimulation. Furthermore, none of the currently available devices are capable of artificially restoring lost sensation in users' hands, limiting their ability to manipulate with fragile objects. Recognizing these limitations, our study proposes a solution that combines a standard hand soft exoskeleton with: (i) electrical stimulation to the fingers' flexor and extensor muscles to generate artificial muscle contractions synchronized with the exoskeleton motion, compensating for the lack of gripping force, and (ii) electrical stimulation to the nerves to artificially restore the lost sensation of touch, enabling users to receive feedback on the force they are applying when interacting with the environment. The investigators refer to this proposed combination as Sensible-Exo. To achieve this goal, our project aims to evaluate the functional improvements in assistive and rehabilitative scenarios using SensoExo in comparison to use only the exoskeleton or having no support at all. The exoskeleton will be coupled with an electrical stimulating sleeve capable of delivering non-invasive electrical stimulation in the form of Functional Electrical Stimulation (FES) and Transcutaneous Electrical Nerve Stimulation (TENS). A glove with embedded force and bending sensors will be used to modulate the electrical stimulation. Additionally, apart from studying the enhancement of functional tasks, the investigators will explore improvements in body perception, representation, and multi-sensory integration. Indeed, the investigators also aim at identifying the way patients perceive their body by means of ad-hoc virtual reality assessments that has been developed. Before each assessment patient will perform some predefined movement in virtual reality to familiarize with it and increase embodiment. During the study, participants will perform a range of tasks based on their residual abilities, including motor tasks (e.g., grab and release, Toronto Rehabilitation Institute Hand Function Test, grip force regulation test, virtual egg test), cognitive tasks (dual tasks), and assessments of body representation and perception. Some of these tasks will be conducted in Virtual Reality environments, both with and without active stimulation.
Hyperbaric Oxygen Brain Injury Treatment Trial
Traumatic Brain InjuryThe purpose of this innovative adaptive phase II trial design is to determine the optimal combination of hyperbaric oxygen treatment parameters that is most likely to demonstrate improvement in the outcome of severe TBI patients in a subsequent phase III trial.
RECONsolidation of Traumatic Memories to ResOLve Post Traumatic Stress Disorder (RECONTROLPTSD)...
Posttraumatic Stress DisorderTraumatic Brain InjuryPosttraumatic Stress Disorder (PTSD) is a common cause of morbidity in combat veterans, but current treatments are often inadequate. Reconsolidation of Traumatic Memories (RTM) is a novel treatment that seeks to alter key aspects of the target memory (e.g., color, clarity, speed, distance, perspective) to make it less impactful, and reduce nightmares, flashbacks, and other features of PTSD. The memory is reviewed in the context of an imaginal movie theater, presenting a fast (~45 sec) black and white movie of the trauma memory, with further adjustment as needed so the patient can comfortably watch it. Open and waitlist studies of RTM have reported high response rates and rapid remission, setting the stage for this randomized, controlled, single-blind trial comparing RTM versus prolonged exposure (PE), the PTSD therapy with the strongest current evidence base. The investigators hypothesize that RTM will be non-inferior to PE in reducing PTSD symptom severity post-treatment and at 1-year follow up; will achieve faster remission, with fewer dropouts; will improve cognitive function; and that epigenetic markers will correlate with treatment response. The investigators will randomize 108 active or retired service members (SMs) with PTSD to ≤10 sessions of RTM or PE, affording power to test our hypotheses while allowing for ≤ 25% dropouts. The investigators will use an intent to treat analysis, and the Clinician Administered PTSD Scale for the Diagnostic and Statistical Manual of Mental Disorders, 5th Edition, or DSM5 (CAPS-5), conducted by blinded assessors, will be the primary outcome measure. Secondary measures of depression (PHQ-9), anxiety (GAD-7), sleep (PSQI), and functional status (WHOQOL-100), will be assessed pre- and post-treatment, and at 2, 6, and 12 months. ANOVA will compare symptom severity over time within and between groups. The investigators will track comorbid TBI, anticipating it will not adversely impact response. More effective therapies for PTSD, with and without TBI, must be developed and evaluated. RTM is safe and promising, but requires testing against evidence-based interventions in well-designed randomized clinical trials (RCTs). The full study can be conducted either in person or via secure video conferencing.
Improving Learning in Hispanics With TBI or MS
TBI (Traumatic Brain Injury) or MS (Multiple Sclerosis)The goal of this study is to establish that a memory retraining protocol, originally developed for English-speakers, and translated into Spanish, is effective.
Combined tDCS and Cognitive Training to Reduce Impulsivity in Patients With Traumatic Brain Injury...
Traumatic Brain InjuryImpulsivityBehavioral changes following a traumatic brain injury (TBI) are one of the biggest challenges for patients, as well as their family members and others involved in their recovery. One of the most common behavioral changes following TBI is the emergence of impulsive behavior, which has been associated with destructive, suicidal, and aggressive behavior, and is related to poor rehabilitation program adherence. The primary objective of this study is to investigate the effect of a novel neuroplasticity based intervention that combines cognitive training and transcranial direct current stimulation (tDCS) to reduce impulsivity and to improve outcomes and quality of life for those who have suffered a TBI.