Cognitive and Vascular Functioning Following TBI
Traumatic Brain InjuryCognitive Decline1 moreThis observational study will examine the association of chronic traumatic cerebrovascular injury and cardiovascular risk factors with TBI-related cognitive impairment and vascular dementia. Cerebrovascular, inflammatory, and neurodegenerative blood biomarkers as well as clinical and neuroimaging data
Incidence of Neurogenic Paraosteoarthropathies in a Population of Brain Traumatized and Spinal Cord...
Spinal Cord InjuriesInjury2 moreNeurogenic paraosteoarthropathies are peri-articular bone formations that may occur as a result of central neurological injury. Their occurrence limits reeducation and recovery capacities. Neurogenic paraosteoarthropathies sometimes cause complications (pain, joint stiffness, vascular and nerve compression, pressure sores) in patients already suffering from severe neurological sequelae affecting functional prognosis. A lot of clinical research work has been carried out within Dr Salga team. Subsequently, a collaboration was born with fundamental research teams (Pr Levesque, Pr Le Bousse Kerdilès, Pr Banzet, Pr Genêt) allowing translational work between humans and animals. The clinical application of recent research findings now makes it possible to launch the very first prospective study on neurogenic paraosteoarthropathies.
Longitudinal Study of Traumatic Brain Injury (TBI) in (University of Florida) UF Athletes
Traumatic Brain InjuryTo identify the changes in the brain following repeated sports-related concussion in men's football, women's soccer, and women's lacrosse college athletes by reviewing the findings of MRI studies that look at the structure of the brain and the appearance of the white matter at baseline, during the acute phase of a concussive injury, and upon completion of collegiate athletic play and correlate these findings with standard clinical measures.
Vagus Nerve Stimulation to Augment Recovery From Minimally Conscious or Persistently Vegetative...
Minimally Conscious States Due to Traumatic Brain InjuryPersistently Vegetative States Due to Traumatic Brain InjuryTraumatic brain injury has a high morbidity and mortality in both civilian and military populations. Blast and other mechanisms of traumatic brain injury damage the brain by causing neurons to disconnect and atrophy. Such traumatic axonal injury can lead to persistently vegetative and minimally conscious states, for which extremely limited treatment options exist, including physical, occupational, speech and cognitive therapies. More than 50,000 patients have received vagus nerve stimulation for epilepsy and depression. In addition to decreased seizure frequency and severity, patients report enhanced mood, reduced daytime sleepiness independent of seizure control, increased slow wave sleep, and improved cognition, memory, and quality of life. The purpose of this study is to demonstrate objective improvement in clinical outcome by placement of a vagus nerve stimulator in patients who are recovering from severe traumatic brain injury. Our hypothesis is that stimulation of the vagus nerve results in increased cerebral blood flow and metabolism in the forebrain, thalamus and reticular formation, which promotes arousal and improved consciousness, thereby improving outcome after traumatic brain injury resulting in minimally conscious or persistent vegetative states. If this study demonstrates that vagus nerve stimulation can safely and positively impact outcome, then a larger randomized prospective crossover trial will be proposed. The investigators will achieve this objective by evaluating whether vagus nerve stimulation impacts clinical recovery from minimally conscious or persistent vegetative states caused by traumatic brain injury as assessed by the FIM™ instrument and Functional Assessment Measure (FIM+FAM) as well as the JFK Coma Recovery Scale Score. The investigators will also evaluate whether vagus nerve stimulation alters resting and activational functional MRI. Twelve patients will be enrolled in this initial crossover pilot study. These patients will have sustained a severe traumatic brain injury (Disability Rating Scale score of 22 to 29) more than twelve months from starting the study, and have no other concurrent active severe medical problems. Baseline EEG and magnetic resonance imaging (MRI) will be performed prior to left vagus nerve stimulation implantation. Patients will be randomized to alternating three month periods with the device on or off. Outcomes will be assessed at three month intervals with the FIM™ instrument and Functional Assessment Measure (FIM+FAM) and JFK Coma Recovery Scale by a neuropsychologist blinded to the status of the device. Outcomes will also be assessed using quantitative eye movement tracking and functional magnetic resonance imaging. Patients will cross over every 3 months and be followed for at least 18 months.
Dynamic Decompressive Craniotomy
Brain EdemaTBI (Traumatic Brain Injury)4 moreProspective observational study on patients undergoing decompressive craniotomy
Temporomandibular Joint Dysfunction in Patients With Traumatic Brain Injury
Temporomandibular DysfunctionTrauma, neurological disorders and psychological problems, which are the etiological factors of temporomandibular joint dysfunction, can be seen in patients with traumatic brain injury. The aim of this study is to investigate temporomandibular joint dysfunction in patients with traumatic brain injury. Participants (traumatic brain injury patients and healthy volunteers) will be evaluated once for temporomandibular joint dysfunction.
m-Health Supportive Care Transition Program in Improving Post-Discharged Outcomes
Traumatic Brain InjuryCaregiver Burden1 moreThis intervention study aims to investigate the effects of the m-Health supportive care transition program on response patterns (transition stress and the burden of caregiving) among traumatic brain injury (TBI) caregivers and patients' readmission rate one month after hospital discharge. Specific objectives: Compare the response patterns (transition stress and the burden of caregiving) of TBI caregivers before and after receiving the program within the group. Compare TBI caregivers' response patterns (transition stress and the burden of caregiving) between the control and intervention groups. Compare patients' readmission rates at one month after hospital discharge between the control and intervention groups TBI caregivers are divided into two groups: the intervention group (who receive the transitional care program) and the control group (who receive the standard care program) according to standard operating procedures applicable in the hospital. If there is a comparison group: Researchers will compare [insert groups] to see if [insert effects]
Prospective, Interventional Study Evaluating the Feasibility and Safety of the Esophageal Cooling...
Traumatic Brain InjuryThe aim of this prospective, interventional study is to assess the feasibility and safety of the Esophageal Cooling Device in patients from suffering from traumatic brain injury who the treating physician is treating with targeted temperature management. Comparison of outcomes will be made to historical controls. The primary outcome is the feasibility of inducing, maintaining, and rewarming patients from targeted temperature management using the Esophageal Cooling Device (cooling rate, rewarming rate, and the percent of time within goal temperature during the goal-temperature maintenance period). Evaluation of adverse events (including cardiac arrhythmias, severe bradycardia, myocardial infarction/re-infarction, dysphagia, odynophagia, aspiration pneumonia, non-aspiration pneumonia, reflux, esophageal injury, and esophagitis) will be closely monitored during the whole period of targeted temperature management (secondary endpoint).
Micronutrient Supplement Effects on Cognitive Outcomes in Post-Acute TBI
Traumatic Brain InjuryTraumatic brain injury (TBI) refers to neuronal damage occurring as the result of an external force being applied to brain tissue. In the United Kingdom annual figures (2013-2014) show 449,000 hospital admittances with a diagnosis of head injury with males up to five times more likely to sustain a head injury than females. Traumatic brain injury (TBI) causes life-long disability, with no significant reduction in life expectancy, affecting a diverse range of cognitive and social functions including memory, task planning and execution, impulse control, social interactions, personality changes and depression. Following traumatic brain injury acquired deficits can lead to problems with resumption of aspects of daily life, particularly in terms of returning to work and interpersonal relationships. The initial injury triggers a secondary cascade of metabolic, neurochemical and cellular changes within the brain, primarily aimed at limiting damage and stimulating repair. Paradoxically prolonged secondary cascade mechanisms, including haemorrhage, oedema, neuroinflammation and axonal injury, results in exacerbation of deficits observed. The heterogeneous on-going nature of the secondary cascade presents clinicians with opportunities to intervene in an attempt to limit neuronal damage. A large body of nutritional research has been focused on addressing the hypermetabolic and catabolic states created by secondary cascade processes in the acute stage. Addressing these demands has played a significant role in reducing mortality and infection rates following head injury, however there has not been the same depth of research investigating the post-acute period (once individuals are discharged from hospital).
Pain Management Using Mobile Technology in Veterans With PTSD and TBI
Chronic PainPosttraumatic Stress Disorders1 moreUp to half of military veterans with traumatic brain injury (TBI) also suffer from co-occurring posttraumatic stress disorder (PTSD). Both are linked to higher risk of chronic pain, one of the most common health complaints among U.S. veterans who served in Operation Enduring Freedom (Afghanistan), Operation Iraqi Freedom (Iraq), and Operation New Dawn (OEF/OIF/OND). However, pain medications elevate risk of opioid abuse, and studies indicate that veterans perceive barriers to traditional mental health treatments. Little research exists regarding non-pharmacological, technology-based interventions designed to reduce pain in veterans with PTSD and TBI. Mobile technology used to implement neurofeedback (EEG biofeedback) shows promise in providing a portable, low-cost intervention for reducing pain in veterans with co-occurring disorders. We aim to test the feasibility and effectiveness of using mobile neurofeedback devices for reducing pain symptoms in veterans with PTSD and TBI. Veterans with PTSD, TBI, and chronic pain will receive a NeuroSky headset (which reads EEG brain waves) and an iPod Touch with an app called Mobile Neurofeedback (which provides neurofeedback to induce relaxation). Veterans are taught how to use these together to do neurofeedback themselves at home for 12 weeks. Guided by existing research and preliminary data, we hypothesize that participants will show high levels of adherence to the NeuroSky + Mobile Neurofeedback intervention for the 3-month study duration and that participants will show statistically significant reduction in pain symptoms at 3 months compared to baseline. Given links between pain and other outcomes in veterans, we will also explore effects on drug abuse, violence, and suicidality. When the research is complete, the field will be changed because we will know whether new technology reading EEG brainwaves can be used to treat symptoms among individuals suffering from chronic pain. We will also know whether neurofeedback shows promise as an effective intervention for veterans with PTSD and TBI to reduce pain and related outcomes. If this program of research is successful, its impact will be to shift approaches to managing pain in clinical practice, for both veterans and civilians