search

Active clinical trials for "Brain Injuries, Traumatic"

Results 831-840 of 1495

Simvastatin for mTBI

TBI-Traumatic Brain Injury

Study of simvastatin in Iraq/Afghanistan Veterans with multiple blast exposure and mTBI. The study will measure substances in cerebrospinal fluid (CSF) that are related to dementing disorders.

Completed23 enrollment criteria

Treatment Strategy to Prevent Mood Disorders Following Traumatic Brain Injury

Traumatic Brain Injury

The purpose of this study is to examine the efficacy of sertraline to prevent the onset of mood and anxiety disorders during the first six months after traumatic brain injury.

Completed12 enrollment criteria

Mild Traumatic Brain Injury Discrimination

Brain Concussion

Evaluation of the utility of a multi-modal assessment tool in distinguishing between individuals with and without a history of mild traumatic brain injury.

Completed8 enrollment criteria

Traumatic Brain Injury and Effects of Acute Cyclosporine A

Traumatic Brain Injury

This is a prospective, randomized, placebo-controlled study about Cyclosporine A (CSP) and traumatic brain injury (TBI). Cyclosporine A is a drug already marketed and available for other diseases, but is not approved by the Food and Drug Administration for treatment of traumatic brain injury. The effect of Cyclosporine A on chemicals produced following brain injury is being determined using doses no larger than those used for patients having organ transplant. It is also being given for a much shorter time period (3 days). It is not know if side effects seen in patients taking cyclosporine A will occur when it is given for only 3 days. It is not known if patients with brain injury that are treated with cyclosporine A will have side effects like those seen in organ transplant patients.

Withdrawn15 enrollment criteria

Tau Imaging of Chronic Traumatic Encephalopathy

Chronic Traumatic Encephalopathy

Chronic traumatic encephalopathy (CTE) is a progressive degenerative brain disease with symptoms that include memory loss, problems with impulse control, and depression that can lead to suicide. As the disease progresses, it can lead to dementia. Currently CTE can only be diagnosed postmortem where an over-accumulation of a protein called tau is observed. There is now a new experimental measure that makes it possible, for the first time, to measure tau protein in the living human brain using a novel positron emission tomography (PET) ligand, [F-18] AV-1451 (aka, [18F]-T807). The main objective of this study is to use a novel PET approach to measure tau accumulation in the brain. The presence of CTE at autopsy in deceased National Football League (NFL) players has been well documented. Accordingly, we will conduct this study in a group of retired NFL players who have clinical symptoms of CTE and are suspected of having CTE based on high levels of tau in their spinal fluid and abnormalities seen on research brain scans. We will compare them with a control group of former elite level athletes who have not experienced any brain trauma, deny any clinical symptoms, and who have completely normal spinal fluid tau and amyloid levels, and brain scans. We will also include a group of subjects with AD. All participants will be recruited from ongoing studies, headed by the Partnering PI of this proposal, Dr. Robert Stern, at the Boston University Center for the Study of Traumatic Encephalopathy and the Alzheimer's Disease Center. We will use both a beta amyloid PET scan ([18F]-florbetapir) and a tau PET scan ([18F]-T807) on consecutive days. With the beta amyloid scan we expect little or no evidence of amyloid in the NFL players with presumed CTE, and no evidence of amyloid in the control group of athletes with no history of repetitive brain trauma. In contrast we expect to see beta amyloid accumulation in the AD patient brains. With the new tau ligand, we expect that the NFL players with presumed CTE will show elevated levels of tau protein in the brain, which will not be observed in athletes without a history of brain trauma, but which will be seen in the AD patients' brains. Another goal is to use the latest MRI technologies to develop specific tau imaging biomarkers that correlate with the PET and spinal fluid tau measures but without the radiation of PET or invasiveness of spinal taps. The development of these surrogate imaging markers of tau, is critically important to diagnosing CTE. This in turn will lead to studies relevant to treatment and prevention of this devastating disease. Finally, as an exploratory method of examining possible genetic risk for CTE, we will also use cutting edge genetic analysis of blood samples from subjects in this proposal and compare tau load, measured by PET tau ligand uptake and cerebrospinal fluid (CSF) p-tau level, with a measure of genetic susceptibility to tau load, referred to as the genetic risk score for tau.

Completed32 enrollment criteria

Stem Cell Therapy in Traumatic Brain Injury

Traumatic Brain Injury

The purpose of this study was to study the effect of stem cell therapy on common symptoms in patients with Traumatic Brain Injury

Withdrawn14 enrollment criteria

Hypernatremia for the Prevention and Treatment of Cerebral Edema in Traumatic Brain Injury

Traumatic Brain InjurySubdural Hematoma3 more

Cerebral edema is seen heterogenous group of neurological disease states that mainly fall under the categories of metabolic, infectious, neoplasia, cerebrovascular, and traumatic brain injury disease states. Regardless of the driving force, cerebral edema is defined as the accumulation of fluid in the brain's intracellular and extracellular spaces. This occurs secondary to alterations in the complex interplay between four distinct fluid compartments within the cranium. In any human cranium; fluid is contained in the blood, the cerebrospinal fluid, interstitial fluid of the brain parenchyma, and the intracellular fluid of the neurons and glia. Fluid movement occurs normally between these compartments and depends on specific concentrations of solutes (such as sodium) and water. In brain-injured states, the normal regulation of this process is disturbed and cerebral edema can develop. Cerebral edema leads to increased intracranial pressure and mortality secondary to brain tissue compression, given the confines of the fixed-volume cranium. Additionally, secondary neuronal dysfunction or death can occur at the cellular level secondary to the disruption of ion gradients that control metabolism and function. While studies utilizing bolus dosing of hyperosmolar therapy to target signs or symptoms of increased intracranial pressure secondary to cerebral edema are numerous, there is a paucity of studies relating to continuous infusion of hyperosmolar therapy for targeted sustained hypernatremia for the prevention and treatment of cerebral edema. The investigators hypothesize that induced, sustained hypernatremia following traumatic brain injury will decrease the rate of cerebral edema formation and improve patient outcomes.

Withdrawn26 enrollment criteria

A Pilot Trial of Citicoline in Individuals With Mild Traumatic Brain Injury (mTBI)

Traumatic Brain Injury

This investigation will explore the impact of 8 weeks of citicoline treatment on cognitive function, clinical state and substance use in 40 individuals with mild traumatic brain injury (mTBI).

Withdrawn32 enrollment criteria

Rapid Biochemical Diagnostics of Traumatic Brain Injury

Traumatic Brain InjuryConcussion2 more

The objective of the study is to confirm the clinical relevance of the novel biomarker for traumatic brain injury (TBI) detection. Samples of blood, urine and saliva will be collected from a) patients with suspected TBI (isolated), b) patients with orthopedic injury, and c) healthy controls. The sponsor will do biochemical investigations for the samples to evaluate the presence, level and structure of the targeted biomarker.

Completed14 enrollment criteria

Impact of GHRH on Sleep Promotion and Endocrine Regulation in Service Members Who Sustained a Traumatic...

Sleep DisorderTraumatic Brain Injury

Background: People who have had a traumatic brain injury (TBI) often have trouble sleeping. TBI may also alter hormones, which can cause poor sleep. Researchers believe that a form of growth hormone releasing hormone (GHRH) might improve sleep in service members and veterans who have had a TBI. Objective: To see if GHRH can improve sleep in people who have had a TBI. Eligibility: Active duty service members or veterans (active duty in the past 10 years) ages 18-45 who have had a TBI in the past 6 months to 10 years. Design: Participants will be screened with: Medical history Physical exam Blood and urine tests Getting ACTH (a hormone) through an intravenous catheter (thin plastic tube) Interview about their mood and alcohol and drug use Questionnaires about their TBI, mood, and sleep Participants will have 2 overnight study visits a couple weeks apart. These will include: Physical exam Urine sample Two intravenous catheters placed. Blood samples will be taken throughout the night. Two shots under the skin of the belly. The shots will be GHRH on one visit and placebo on the other. Spending the night in the sleep lab. Their brain waves will be recorded with electrodes placed on the scalp. A questionnaire in the morning about their sleep Participants will be called a few days after each overnight visit. They will be asked about how they are feeling and to rate their sleep.

Withdrawn30 enrollment criteria
1...838485...150

Need Help? Contact our team!


We'll reach out to this number within 24 hrs