A Study of Selinexor in People With Wilms Tumors and Other Solid Tumors
Wilms TumorRhabdoid Tumor5 moreThe purpose of this study is to find out whether selinexor is an effective treatment for people under the age of 51 who have a relapsed/refractory Wilms tumor, rhabdoid tumor, MPNST, or another solid tumor that makes a higher than normal amount of XPO1 or has genetic changes that increase the activity of XP01.
Tipifarnib for the Treatment of Advanced Solid Tumors, Lymphoma, or Histiocytic Disorders With HRAS...
Malignant Solid NeoplasmRecurrent Adrenal Gland Pheochromocytoma39 moreThis phase II pediatric MATCH trial studies how well tipifarnib works in treating patients with solid tumors that have recurred or spread to other places in the body (advanced), lymphoma, or histiocytic disorders, that have a genetic alteration in the gene HRAS. Tipifarnib may block the growth of cancer cells that have specific genetic changes in a gene called HRAS and may reduce tumor size.
Tegavivint for the Treatment of Recurrent or Refractory Solid Tumors, Including Lymphomas and Desmoid...
Colorectal CarcinomaEndometrial Carcinoma20 moreThis phase I/II trial evaluates the highest safe dose, side effects, and possible benefits of tegavivint in treating patients with solid tumors that has come back (recurrent) or does not respond to treatment (refractory). Tegavivint interferes with the binding of beta-catenin to TBL1, which may help stop the growth of tumor cells by blocking the signals passed from one molecule to another inside a cell that tell a cell to grow.
Vorinostat in Combination With Chemotherapy in Relapsed/Refractory Solid Tumors and CNS Malignancies...
Ewing SarcomaRhabdomyosarcoma4 moreInvestigators are testing new experimental drug combinations such as the combination of vorinostat, vincristine, irinotecan, and temozolomide in the hopes of finding a drug that may be effective against tumors that have come back or that have not responded to standard therapy. The goals of this study are: To find the highest safe dose of vorinostat that can be given together with vincristine, irinotecan, and temozolomide without causing severe side effects; To learn what kind of side effects this four drug combination can cause; To learn about the effects of vorinostat and the combination of vorinostat, vincristine, irinotecan, and temozolomide on specific molecules in tumor cells; To determine whether the combination of vorinosat, vincristine, irinotecan, and temozolomide is a beneficial treatment.
Selpercatinib for the Treatment of Advanced Solid Tumors, Lymphomas, or Histiocytic Disorders With...
Hematopoietic and Lymphoid System NeoplasmRecurrent Ependymoma36 moreThis phase II pediatric MATCH treatment trial studies how well selpercatinib works in treating patients with solid tumors that may have spread from where they first started to nearby tissue, lymph nodes, or distant parts of the body (advanced), lymphomas, or histiocytic disorders that have activating RET gene alterations. Selpercatinib may block the growth of cancer cells that have specific genetic changes in an important signaling pathway (called the RET pathway) and may reduce tumor size.
Interleukin-15 Armored Glypican 3-specific Chimeric Antigen Receptor Expressed in T Cells for Pediatric...
Liver CancerRhabdomyosarcoma4 morePatients may be considered if the cancer has come back, has not gone away after standard treatment or the patient cannot receive standard treatment. This research study uses special immune system cells called AGAR T cells, a new experimental treatment. The body has different ways of fighting infection and disease. No single way seems perfect for fighting cancers. This research study combines two different ways of fighting cancer: antibodies and T cells. Antibodies are types of proteins that protect the body from infectious diseases and possibly cancer. T cells, also called T lymphocytes, are special infection-fighting blood cells that can kill other cells, including cells infected with viruses and tumor cells. Both antibodies and T cells have been used to treat patients with cancers. They have shown promise, but have not been strong enough to cure most patients. Investigators have found from previous research that they can put a new gene (a tiny part of what makes-up DNA and carries your traits) into T cells that will make them recognize cancer cells and kill them. In the lab, investigators made several genes called a chimeric antigen receptor (CAR), from an antibody called GPC3. The antibody GPC3 recognizes a protein found solid tumors including pediatric liver cancers. This CAR is called GPC3-CAR. To make this CAR more effective, investigators also added a gene that includes IL15. IL15 is a protein that helps CAR T cells grow better and stay in the blood longer so that they may kill tumors better. The mixture of GPC3-CAR and IL15 killed tumor cells better in the laboratory when compared with CAR T cells that did not have IL15 .This study will test T cells that investigators made (called genetic engineering) with GPC3-CAR and the IL15 (AGAR T cells) in patients with GPC3-positive solid tumors such as yours. T cells made to carry a gene called iCasp9 can be killed when they encounter a specific drug called Rimiducid. The investigators will insert the iCasp9 and IL15 together into the T cells using a virus that has been made for this study. The drug (Rimiducid) is an experimental drug that has been tested in humans with no bad side-effects. The investigators will use this drug to kill the T cells if necessary due to side effects. This study will test T cells genetically engineered with a GPC3-CAR and IL15 (AGAR T cells) in patients with GPC3-positive solid tumors. The AGAR T cells are an investigational product not approved by the Food and Drug Administration. The purpose of this study is to find the biggest dose of AGAR T cells that is safe, to see how long they last in the body, to learn what the side effects are and to see if the AGAR T cells will help people with GPC3-positive solid tumors.
Ensartinib in Treating Patients With Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma,...
Advanced Malignant Solid NeoplasmMalignant Solid Neoplasm31 moreThis phase II Pediatric MATCH trial studies how well ensartinib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with ALK or ROS1 genomic alterations that have come back (recurrent) or does not respond to treatment (refractory) and may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced). Ensartinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
Larotrectinib in Treating Patients With Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin...
Advanced Malignant Solid NeoplasmRecurrent Ependymoma31 moreThis phase II Pediatric MATCH trial studies how well larotrectinib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with NTRK fusions that may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced) and have come back (relapased) or does not respond to treatment (refractory). Larotrectinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
Ivosidenib in Treating Patients With Advanced Solid Tumors, Lymphoma, or Histiocytic Disorders With...
Recurrent EpendymomaRecurrent Ewing Sarcoma31 moreThis phase II Pediatric MATCH trial studies how well ivosidenib works in treating patients with solid tumors that have spread to other places in the body (advanced), lymphoma, or histiocytic disorders that have IDH1 genetic alterations (mutations). Ivosidenib may block the growth of cancer cells that have specific genetic changes in an important signaling pathway called the IDH pathway.
A Pilot Study of Thermodox and MR-HIFU for Treatment of Relapsed Solid Tumors
Solid TumorsSoft Tissue Sarcoma7 moreThis is a pilot study of LTLD with MR-HIFU hyperthermia followed by ablation in subjects with refractory/relapsed solid tumors.